.

生活中的化学一大波化学反应动图来袭

说:

第一弹炫酷的化学反应动图你们都看过了吗?小编看完感觉又回到了高中时代呢!↓↓↓

第一弹戳右→化学实验详细解说——酷炫停不下来(动图)

屏住呼吸,海量第二弹强势推出,接好你的下巴!

1、气体点燃

原理:燃烧需要可燃物和氧气接触,狭窄的瓶口使得氧气只能逐渐进入,燃烧面逐渐下移。

危险:中高。可燃气体处理不当极易导致爆炸。

2、燃烧的镁投入水中

原理:常温下镁与水其实就可以反应,但除非是镁粉,否则速度很慢。高温时二者会剧烈反应生成氧化镁和氢气。氢气继续燃烧,和燃烧的镁一起产生炫目的光影效果。

花絮:这个反应是日本设计的一种试验性发动机的基本原理。镁和水反应生成的氧化镁在激光的作用下重新分解成镁单质和氧气,整个反应只消耗水,而激光则由太阳光提供动力。不过这一发动机投入使用似乎还很遥远。

危险:中。镁燃烧时高温,遇水剧烈反应可能溅出红热液态镁导致烫伤。

3、灯泡中的的宇宙

原理:这是一个闪光灯泡,内装锌丝和氧气,通电即点燃,只能使用一次。外面包有一层塑料膜以防万一灯泡破碎。在现代电子闪光灯出现之前它是主要的闪光道具,抵达满亮度所花时间更长,但燃烧时间也更长。

此图在网上传播时很多人说它是灯泡烧断的瞬间,可惜普通钨丝灯泡到寿命时只会慢慢黯淡下去。

花絮:早期的闪光灯泡使用镁丝,亮度不如锌。更早的则是敞开环境下镁粉和氯酸钾混合点燃。这就是“镁光灯”一词的来历。

此外,许多网友表示,“这就是我们的宇宙啊”。

危险:低。使用后灯泡会非常烫,不可立即用手碰。

4、五光十“铯”

原理:铯是活泼的碱金属,和水爆炸式反应生成氢气。高速摄影需要极强的光,光照产生的高温使得铯无法保持固态,因此实验采用安瓿来装液态铯。小锤击碎安瓿瞬间,铯液滴倾泻而出,在空中就和水蒸气、氧气反应留下尾迹,大块入水后产生爆炸式反应。

花絮:在互联网上有这样一个钓鱼贴,“……爱迪生等得不耐烦了,拿过铯块,浸在水中,将溢出的水倒在了量杯里量出体积,就知道了铯块的体积。”也许这才是爱迪生耳聋的真正原因?

危险:高。铯与水反应非常剧烈,注意防护。

5、锌火

原理:这种液体是二乙基锌。它是一种极易燃烧的有机锌化合物,接触氧气便自燃。真正的二乙基锌如此图所示是蓝色火焰,但是网上流传最广的视频/动图来自年诺丁汉大学,他们拍到了黄色的火焰——照他们自己的说法,这是钠污染所致。

花絮:二乙基锌于年发现,是第一个有机锌化合物。它在有机合成中的应用极其广泛,也曾被早期火箭研究者用作液体燃料。

危险:高。能自燃的没几个好东西,何况是液态。

6、铝遭遇溴

原理:铝是极活泼的金属,因为表面致密氧化层而在空气中稳定,但会和很多其它氧化剂剧烈反应。溴就是其中之一。生成的三溴化铝溶于水的反应也会放热,可能导致爆炸。实验完的试管必须先冷却然后用轻柔的水流慢慢溶解,清洗后还要加入硫代硫酸钠溶液以还原任何残留的溴。

花絮:“三溴化铝”真正的存在形态其实是Al2Br6,它十分稳定,哪怕气化之后也只有一部分会分解成AlBr3。

危险:高。溴有挥发性和腐蚀性,吸入有毒,需防护措施。反应剧烈且有喷溅,请务必从少量开始!

7、水火交融

原理:烧杯底部放入了少量乙醚和金属钾,当加入水时,金属钾与水反应生成氢气并大量产热,造成氢气和乙醚蒸汽的燃烧,而隐约可见的紫色火焰来自钾离子的焰色反应。

花絮:在元素周期表上,越靠下的碱金属性质越活泼,与水的反应也越剧烈。当然,铯才是其中真正的大杀器。

危险:中高。金属钾性质活泼,乙醚极易挥发和燃烧,应注意防护,避免火灾。

8、红与黑

原理:这是“碘钟反应”的一个变种。实验中所用到的三种无色透明溶液(从前到后)分别加入了:

1、可溶性淀粉和焦亚硫酸钠

2、氯化汞

3、碘酸钾

其中发生的反应包括:

1、焦亚硫酸钠与水反应生成亚硫酸氢钠Na2S2O5+H2O→2NaHSO3

2、亚硫酸氢钠将碘酸根还原为碘离子IO3-+3HSO3-→I-+3SO42-+3H+

3、随着碘离子浓度的升高,可溶性的汞盐开始与碘离子形成碘化汞沉淀(橙红色)Hg2++2I-→HgI2

4、剩余的碘离子与碘酸根离子生成碘单质IO3-+5I-+6H+→3I2+3H2O

5、碘单质与可溶性淀粉结合形成蓝黑色的包合物

花絮:这个改良版的反应由两名普林斯顿大学的学生发明,他们在其中加入了汞盐,使这个反应可以先后形成橙红色和黑色,而橙黑配正是普林斯顿大学的代表色。这个反应通常被称为“OldNassauReaction”,其中“OldNassau”指的就是普林斯顿大学[1]。因为颜色的缘故,它也被叫做“万圣节反应”。

危险:高。氯化汞毒性很强,吸入、皮肤接触或误食时均有较高风险,请勿在家尝试。

9、铜和硝酸

原理:铜与浓硝酸反应,生成硝酸铜、二氧化氮和水,生成的气体通入水中,随着气体生成停止并逐渐溶解,水倒吸进入反应瓶,最终形成淡蓝色的硝酸铜溶液。

Cu(s)+4HNO3(aq)→Cu(NO3)2(aq)+2NO2(g)+2H2O(l)

一开始出现的绿色与浓酸条件下铜离子与硝酸根的结合有关[2],而在引入更多水之后,溶液就显示为水合铜离子的蓝色了。

花絮:铜和浓硝酸大概是最难背的高中化学反反应了……等等,还有稀硝酸。你还记得怎么配平吗?

危险:中,浓硝酸具有较强腐蚀性,推荐使用手套和护目镜。二氧化氮气体有毒,不过在该实验中大部分生成气体都会被水吸收。后半部分倒吸造成的“喷泉”现象有较小的造成烧瓶损坏的风险,如果在开放实验室中进行,应使用安全屏保护观众。

10、甲烷泡泡

原理:将甲烷通入肥皂水产生甲烷气泡。在点燃泡泡时,其中的甲烷气体迅速燃烧。

花絮:事实上,在自然界也可以找到甲烷泡泡,冬天的时候它们会出现在一些封冻的湖中,这种泡泡也是非常易燃的。

危险:中。请戴好护目镜,远离易燃物,使用长杆引火工具远距离点燃。

11、魔法掸子

原理:实际上和掸子无关,爆炸的是纸上的物质。三碘化氮是一种可以发生接触爆炸的物质,稍有扰动即可引起爆炸分解,并产生紫色的碘蒸气。

花絮:另一种会发生爆炸性分解的物质是叠氮化钠,它在受撞击时分解产生大量氮气,因此也被用来制作汽车安全气囊。

危险:高。怎么说这都是爆炸。

12、锂树银花

原理:这是金属锂燃烧的景象,燃烧过程中固态的金属锂不断熔化,并生成氧化锂。锂的焰色反应为红色,但当剧烈燃烧时火焰呈现一种“亮银色”的状态。

花絮:和其他碱金属一样,锂火不能用水来扑灭,需要专门的干粉灭火剂。

危险:中。任何时候都不能对火掉以轻心。

13、小熊糖火山

原理:试管中是加热到熔融状态的氯酸钾,氯酸钾发生热分解产生氧气,试管中的氧气和热足以点燃小熊软糖中的糖类等有机物。氧气促进燃烧,而燃烧产生的热量又进一步促进氯酸钾分解产生更多氧气,因此就产生了剧烈的燃烧反应。

花絮:这个实验还有一个更加丧心病狂的超大号版本(原视频录制者:Vat19):

危险:高。反应非常剧烈,尤其是超大号版本绝对不建议在家尝试(浪费食物不是好孩子!)。

14、金雨

原理:这是硝酸铅与碘化钾发生的复分解反应,其中析出的金黄色结晶为碘化铅。反应式:Pb(NO3)2+2KI→2KNO3+PbI2↓

花絮:碘化铅晶体是一种可以用于X射线和γ射线探测的材料。

危险:高,处理铅盐时必须谨慎防护以防中毒。

15、绿焰

原理:这种看起来效果相当中二的火焰是硼酸三甲酯燃烧产生的。硼酸三甲酯是一种无色透明、高度易燃的液体。青绿色火焰是硼原子的焰色反应特征。

花絮:钡盐和铜盐的焰色反应也呈现绿色。下图是氯化铜(左)与硼酸三甲酯(右)的焰色对比:

(图片来自:







































北京白癜风医院哪些好
让青春没有白癜风干扰



转载请注明:http://www.megaella.net/xgyy/658060.html

  • 上一篇文章:
  • 下一篇文章: 没有了