.

GB建筑设计防火规范

9供暧、通风和空气调节9.一般规定

9..供暧、通风和空气调节系统应釆取防火措施。

9..本条规定为采暖、通风和空气调节系统应考虑防火安全措施的原则要求,相关专项标准可根据具体情况确定更详细的相应技术措施。

9..甲、乙类厂房内的空气不应循环烤用。

丙类厂房内含有燃烧或爆炸危险粉尘、纤维的空气,在循环使用前应经净化处理,并应使空气中的含尘浓度低于其爆炸下限的5%。

9..本条为强制性标准条文。甲、乙类厂房,有的存在甲、乙类挥发性可燃蒸气,有的在生产使用过程中会产生可燃气体,在特定条件下易积聚而与空气泪合形成具有爆炸危险的混合气体。甲、乙类厂房内的空气如循环使用,尽管可减少一定能耗,但火灾危险性可能持续增大。因此,甲、乙类厂房要具备良好的通风条件,将室内空气及时排出到室外,而不循环使用。同时,需向车间内送入新鲜空气,但排风设备在通风机房内存在泄漏可燃气体的可能。

丙类厂房中有的存在可燃纤维(如纺织厂、亚麻厂)和粉尘,易造成火灾的蔓延,除及时、经常清扫外,若要循环使用空气,要在通风机前设滤尘器对空气进行净化后才能循环使用。某些火灾危险性相对较低的场所,正常条件下不具有火灾与爆炸危险,但只要条件适宜仍可能发生火灾。因此,规定空气的含尘浓度要求低于含燃烧或爆炸危险粉尘、纤维的爆炸下限的5%。此规定参考了国内外有关标准对类似场所的要求。

9..3为甲、乙类厂房服务的送风设备与排风设备应分别布置在不同通风机房内,且排风设备不应和其他房间的送、排风设备布置在同一通风机房内。

9..3本条为强制性标准条文。本文规定主要为防止空气真空看过的可燃气体再被送入甲、乙类厂房内或将可燃气体送到其它生产类别的厂房内形成爆炸气氛而导致爆炸事故。

9..4民用建筑内空气中含有容易起火或爆炸危险物质的房间,应设置自然通风或独立的机械通风设施,且其空气不应循环使用。

9..4.本条为强制性标准条文。本条要求民用建筑内存放容易着火或爆炸物质的房间(例如容易放出氢气的蓄电池、使用甲类液体的小型零配件等)所设置的排风设备要采用独立的排风系统,主要为避免将这些容易着火或爆炸的物质通过通风系统送入该建筑内的其它房间。因此,将这些房间的排风系统所排出的气体直接排到室外安全地点,是经济、有效的安全方法。

此外,在有爆炸危险场所使用的通风设备,要根据该场所的、防爆等级和国家有关标准要求选用相应防爆性能的防爆设备。

9..5当空气中含有比空气轻的可燃气体时,水平排风管全长应顺气流方向向上坡度敷设。

9..5本条规定主要为排除比空气轻的可燃气体混合物。将水平排风管沿着排风气流向上设置坡度,有利于比空气轻的气体混合物顺气流方向自然排出,特别是在通风机停机时,能更好地防止在管道内局部积存而形成有爆炸危险的高浓度混合气体。

9..6可燃气体管道和甲、乙、丙类液体管道不应穿过通风机房和通风管道,且不应紧贴通风管道的外壁敷设。

9..6火灾事故表明,通风系统中的道风管道可能成为建筑火灾和烟气蔓延的通道。本条规定主要为避免这两类管道相互影响,防止火灾和烟气经由通风管道进行蔓延。

9.供暖

9..在散发可燃粉尘、纤维的厂房内,散热器表面平均温度不应超过8.5℃。输煤廊的散热器表面平均温度不应超过30℃。

9..本条规定主要为防止散发可燃粉尘、纤维的厂房和输煤廊内的供暖散热器表面温度过高,导致可燃粉尘、纤维与采暖设备接触引起自燃。

目前,我国供暖的热媒温度范围一般为:30℃-70℃、0℃-70℃和95℃-70℃,散热器表面的平均温度分别为:00℃、90℃和8.5℃。若热媒温度为30℃或0℃,对于有些易燃物质,例如赛璐珞(自燃点为5℃)、PSa(自燃点为00℃)、松香(自燃点为30℃),有可能与采暖的设备和管道的热表面接触引起自燃,还有部分粉尘积聚厚度大于5mm时,也会产生融化或焦化而引发火灾,如树脂、小麦、淀粉、糊精粉等。本条规定散热器表面的平均温度不应高于8.5℃,相当于供水温度95℃、回水温度70℃,这时散热器入口处的最高温度为95℃,与自燃点最低的00℃相差5℃,具有一定的安全余量。对于输煤廊,如果热煤温度低,容易发生供暖系统冻结事故,考虑到输煤廊内煤粉在稍高温度时不易引起自燃,故对该场所内散热器的表面温度放宽到30℃。

9..甲、乙类厂房(仓库)内严禁采用明火和电热散热器供暖。

9..本条为强制性标准条文。甲、乙类生产厂房内遇明火发生的火灾,后果十分严重。为吸取教训,规定甲、乙类厂房(仓库)内严禁采用明火和电热散热器供暖。

9..3下列厂房应采用不循环使用的热风供暖:

生产过程中散发的可燃气体、蒸气、粉尘或纤维与供暖管道、散热器表面接触能引起燃烧的厂房;

生产过程中散发的粉尘受到水、水蒸汽的作用能引起自燃、爆炸或产生爆炸性气体的厂房。

9..3本条为强制性标准条文。本条规定应采用不循环使用热风供暖的场所,均为具有爆炸危险性的厂房,主要有:

生产过程中散发的可燃气体、蒸气、粉尘、纤维与采暖管道、散热器表面接触,虽然供暖温度不高,也可能引起燃烧的厂房,如二硫化碳气体、黄磷蒸气及其粉尘等。生产过程中散发的粉尘受到水、水蒸气的作用,能引起自燃和爆炸的厂房,如生产和加工钾、钠、钙等物质的厂房。3生产过程中散发的粉尘受到水、水蒸气的作用能产生爆炸性气体的厂房,如电石、碳化铝、氢化钾、氢化钠、硼氢化钠等放出的可燃气体等。

9..4供暖管填不应穿过存在与供暖管道接触能引起燃烧或爆炸的气体、蒸气或粉尘的房间,确需穿过时,应采用不燃材料隔热。

9..5供暖管道与可燃物之间应保持一定座离,并应符合下列规定:

当供暖管道的表面温度大于00℃时,不应小于00mm或釆用不燃材料隔热;

当供暖管道的表面温度不大于00℃时,不应小于50mm或采用不燃材料隔热。

9..4-9..5供暖管道长期与可燃物体接触,在特定条件下会引起可燃物体蓄热、分解或炭化而着火,需采取必要的隔热防火措施。一般,可将供暖管道与可燃物保持一定的距离。

本条规定的距离,在有条件时应尽可能加大。若保持一定距离有困难时,可釆用不燃材料对供暖管道进行隔热处理,如外包覆绝热性能好的不燃烧材料等。

9..6建筑内供暖管道和设备的绝热材料应符合下列规定:

对于甲、乙类厂房(仓库),应采用不燃材料;

对于其他建筑,宜釆用不燃材料,不得釆用可燃材料。

9..6本条规定旨在防止火势沿着管道的绝热材料蔓延到相邻房间或整个防火区域。在设计中,除首先考虑釆用不燃材料外,还要注意选用热分解毒性小的绝热材料。

9.3通风和空气调节

9.3.通风和空气调节系统,横向宜按防火分区设置,竖向不宜超过5层。当管道设置防止回流设施或防火阀时,管道布置可不受此限制。竖向风管应设置在管井内。

9.3.由于火灾中的热烟气扩散速度较快,在布置通风和空气调节系统的管道时,要采取措施阻止火灾的横向蔓延,防止和控制火灾的竖向蔓延,使建筑的防火体系完整。本条结合工程设计实际和建筑布置需要,规定通风和空气调节系统的布置,横向尽量按每个防火分区设置,竖向一般不大于5层。通风管道在穿越防火分隔处设置防火阀,可以有效地控制火灾蔓延,在此条件下,通风管道横向或竖向均可以不分区或按楼层分段布置。在住宅建筑中的厨房、厕所的垂直排风管道上,多见用防止回流设施防止火势蔓延,在公共建筑的卫生间和多个排风系统的排风机房里需同时设防火阀和防止回流设施。

本规范要求建筑内管道井的井壁应采用耐火极限不低于.00h的防火隔墙,故穿过楼层的竖向风管也要求设在管井内或者采用耐火极限不低于.00h的耐火管道。住宅建筑中的排风管道内采取的防止回流方法,可参见图8所示的做法。具体做法有:

图8排气管防止回流示意图

——增加各层垂直排风支管的高度,使各层排风支管穿越层楼板;

——把排风竖管分成大小两个管道,竖向干管直通屋面,排风支管分层与竖向干管连通;

——将排风支管顺气流方向插入竖向风道,且支管到支管出口的高度不小于mm;

——在支管上安装止回阀。

9.3.厂房内有爆炸危险场所的排风管道,严禁穿过防火墙和有爆炸危险的房间隔墙。

9.3.本条为强制性标准条文。对于有爆炸危险的车间或厂房,容易通过排风管道蔓延到建筑的其它部分,本条对排风管道穿越防火墙和有爆炸危险的部位作了严格限制,以保证防火墙等防火分隔物的完整性并防止通过排风管道将有爆炸危险场所的火灾或爆炸波引人其他场所。

9.3.3甲、乙、丙类厂房内的送、排风管道宜分层设置。当水平或竖向送风管在进入生产车间处设置防火阀时,各层的水平或竖向送风管可合用一个送风系统。

9.3.3在火灾危险性较大的甲、乙、丙类厂房内,送排风管要尽量考虑分层设置。当进入生产车间或厂房的水平或垂直风管设置了防火阀时,可以阻止火灾从着火层向相邻层蔓延,因而各层的水平或垂直送风管可以共用一个系统。

9.3.4空气中含有易燃、易爆危险物质的房间,其送、排风系统应采用防爆型的通风设备。当送风机布置在单独分隔的通风机房内且送风干管上设置防止回流设施时,可采用普通型的通风设备。

9.3.4在风机停机时,一般会出现空气从风管倒流到风机的现象。当空气中含有易燃成易爆炸物质且风机未做防爆处理时,这些物质会随之被带到风机内,并因风机产生的火花而引起爆炸,故风机要采取防爆措施。一般,可采用有色金属制造的风机叶片和防爆的电动机。

若通风机设置在单独隔开的通风机房内,在送风干管内设置止回阀,即顺气流方向开启的单向阀,能防止危险物质倒流到风机内,且通风机房发生火灾后也不致蔓延至其它房间,因此可采用普通的通风设备。

9.3.5含有燃烧和爆炸危险粉尘的空气,在进入排风机前应采用不产生火花的除尘器进行处理。对于遇水可能形成爆炸的粉尘,严禁采用湿式除尘器。

9.3.5本条为强制性标准条文。含有燃烧和爆炸危险粉尘的空气不能进入排风机或在进入排风机前对其进行净化。釆用不产生火花的除尘器,主要为防止除尘器工作过程中产生火花引起粉尘、碎屑燃烧或爆炸。

空气中可燃粉尘的含量控制在5%以下,通常是可防止可燃粉尘形成局部高浓度、满足安全要求的数值。美国消防协会(NFPA)《防火手册》指出:可燃蒸气和气体的警告响应浓度为其爆炸下限的0%;当浓度达到爆炸下限的50%时,要停止操作并进行惰化。国内大部分文献和标准也均采用物质爆炸下限的5%为警告值。

9.3.6处理有爆炸危险粉尘的除尘器、排风机的设置应与其他普通型的风机、除尘器分开设置,并宜按单一粉尘分组布置。

9.3.6根据火灾爆炸案例,有爆炸危险粉尘的排风机、除尘器采取分区、分组布置是必要的。一个系统对应一种粉尘,便于粉尘回收;不同性质的粉尘在一个系统中,有引起化学反应的可能。如硫磺与过氧化铅、氯酸盐混合物能发生爆炸,碳黑混入氧化剂自燃点会降低到00℃。因此,本条强调在布置除尘器和排风机时,要尽量按单一粉尘分组布置。

9.3.7净化有爆炸危险粉尘的干式除尘器和过滤器宜布置在厂房外的独立建筑内,建筑外墙与所属厂房的防火间距不应小于0m。

具备连续清灰功能,或具有定期清灰功能且风量不大于m3/h、集尘斗的储尘量小于60Kg的干式除尘器和过滤器,可布置在厂房内的单独房间内,但应釆用耐火极限不低于3.00h的防火隔墙和.50h的楼板与其他部位分隔。

9.3.7从国内一些用于净化有爆炸危险粉尘的干式除尘器和过滤器发生爆炸的危害情况看,这些设备如果条件允许布置在厂房之外的独立建筑内,并与所属厂房保持一定的防火间距,对于防止发生爆炸和减少爆炸危害十分有利。

9.3.8净化或输送有爆炸危险粉尘和碎屑的除尘器、过滤器或管道,均应设置泄压装置。

净化有爆炸危险粉尘的干式除尘器和过滤器应布置在系统的负压段上。

9.3.8本条为强制性标准条文。试验和爆炸案例分析均表明,用于排除有爆炸危险的粉尘、碎屑的除尘器、过滤器和管道,如果设置泄压装置,对于减轻爆炸的冲击波破坏较为有效。泄压面积大小则需根据有爆炸危险的粉尘、纤维的危险程度,经计算确定。

要求除尘器和过滤器布置在负压段上,主要为缩短含尘管道的长度,减少管道内的积尘,避免干式除尘器布置在系统的正压段上漏风而引起火灾。

9.3.9排除有燃烧或爆炸危险气体、蒸气和粉尘的排风系统,应符合下列规定:

排风系统应设置导除静电的接地装置;

排风设备不应布置在地下或半地下建筑(室)内;

3排风管应采用金属管道,并应直接通向室外安全地点,不应暗设。

9.3.9本条为强制性标准条文。含可燃气体、蒸气和粉尘场所的排风系统,通过设置导除静电接地的装置,可以减少因静电引发爆炸的可能性。地下、半地下场所易积聚有爆炸危险的蒸气和粉尘等物质,因此对上述场所进行排风的设备不能设置在地下、半地下。

第3款规定主要为便于检查维修和排除危险,消除安全隐患。为安全考虑,排气口要尽量远离明火和人员通过或停留的地方。

9.3.0排除和输送温度超过80℃的空气或其他气体以及易燃碎屑的管道,与可燃或难燃物体之间的间隙不应小于50mm,或采用厚度不小于50mm的不燃材料隔热;当管道上下布置时,表面温度较高者应布置在上面。

9.3.0温度超过80℃的气体管道与可燃或难燃物体长期接触,易引起火灾;容易起火的碎屑也可能在管道内发生火灾,并易引燃邻近的可燃、难燃物体。因此,要求与可燃、难燃物体之间保持一定间隙或应用导热性差的不燃隔热材料进行隔热。

9.3.通风、空气调节系统的风管在下列部位应设置公称动作温度为70℃的防火阀:

穿越防火分区处;

穿越通风、空气调节机房的房间隔墙和楼板处;

3穿越重要或火灾危险性大的场所的房间隔墙和楼板处;

4穿越防火分隔处的变形缝两侧;

5竖向风管与每层水平风管交接处的水平管段上。

注:当建筑内每个防火分区的通风、空气调节系统均独立设置时,水平风管与竖向总管的交接处可不设置防火阀。

9.3.本条为强制性标准条文。通风和空气调节系统的风管是建筑内部火灾蔓延的途径之一,要采取措施防止火势穿过防火墙和不燃性防火分隔物等位置蔓延。通风、空气调节系统的风管上应设防火阀的部位主要有:

防火分隔处。主要防止火灾在防火分区或不同防火单元之间蔓延。在某些情况下,必须穿过防火墙或防火隔墙时,需在穿越处设置防火阀,此防火阀一般依靠感烟火灾探测器控制动作,用电讯号通过电磁铁等装置关闭,同时它还具有温度熔断器自动关闭以及手动关闭的功能。风管穿越通风、空气调节机房或其它防火隔墙和楼板处。主要防止机房的火灾通过风管蔓延到建筑内的其它房间,或者防止建筑内的火灾通过风管蔓延到机房。此外,为防止火灾蔓延至重要的会议室、贵宾休息室、多功能厅等性质重要的房间或有贵重物品、设备的房间以及易燃物品实验室或易燃物品库房等火灾危险性大的房间,规定风管穿越这些房间的隔墙和楼板处应设置防火阀。3竖向风管与每层水平风管交接处的水平管段上。主要为防止火势竖向蔓延。4在穿越变形缝的两侧风管上。在该部位两侧风管土各设一个防火阀,主要为使防火阀在一定时间里达到耐火完整性和耐火稳定性要求,有效地起到隔烟阻火作用,参见图9。

图9变形缝处的防火阀

有关防火阀的分类,参见表8。

表8防火阀、排烟防火阀的基本分类

类别

名称

性能及用途

防火类

防火阀

采用70℃温度熔断器自动关闭(防火),可输出联动讯号。用于通风空调系统风管内,防止火势沿风管蔓延。

防烟防火阀

靠感烟火灾探测器控制动作,用电讯号通过电磁阀关闭(防烟),还可采用70℃温度熔断器自动关闭(防火)。用于通风空调系统风管内,防止烟火蔓延。

防火调节阀

70℃时自动关闭,手动复位,0°-90°无级调节,可以输出关闭电讯号。

防烟类

加压送风口

靠感烟火灾探测器控制,电讯号开启,也可手动(或远距离缆绳)开启,可设70℃温度熔断器重新关闭装置,输出电讯号联动送风机开启。用于加压送风系统的风口,防止外部烟气进入。

排烟类

排烟阀

电讯号开启或手动开启,输出开启电讯号联动排烟机开启,用于排烟系统风管上。

排烟防火阀

电讯号开启,手动开启,输出动作电讯号,用于排烟风机吸入口管道或排烟支管上。采用80℃温度熔断器重新关闭。

排烟口

电讯号开启,手动(或远距离缆绳)开启,输出电讯号联动排烟机,用于排烟房间的顶棚或墙璧上,采用80℃重新关闭装置。.:

排烟窗

靠感烟火灾探测器控制动作,电讯号开启,还可缆绳手动开启,用于自然排烟处的外墙上。

9.3.公共建筑的浴查、卫生间和厨房的竖向排风管,应采取防止回流措施或在支管上设置公称动作温度为70℃的防火阀。

公共建筑内厨房的排油烟管道宜按防火分区设置,且在与坚向排风管连接的支管处应设置公称动作温度为50℃的防火阀。

9.3.为防止火势通过建筑内的浴室、卫生间、厨房的垂直排风管道(自然通风或机械排风)蔓延,要求这些部位的垂直排风管采取防回流措施并在其支管上设置防火阀。

由于厨房中平时操作排出的废气温度较高,若在垂直排风管上设置70℃时动作的防火阀,将会影响平时厨房操作中的排风。根据厨房操作需要和厨房常见火灾发生时的温度,本条规定公共建筑厨房的排油烟管道的支管与垂直排风管连接处要设50℃时动作的防火阀,同时,排袖烟管道尽量按防火分区设置。

9.3.3防火阀的设置应符合下列规定:

防火阀宜靠近防火分隔处设置;

防火阀暗装时,应在安装部位设置方便维护的检修口;

3在防火阀两侧各.0m范围内的风管及其绝热材料应采用不燃材料;

4防火阀应符合现行国家标准《建筑通风和排烟系统用防火阀门》GB的规定。

9.3.3本条规定了防火阀的主要性能和具体设置要求。

为使防火阀能自行严密关防,防火阀关闭的方向应与通风和空调的管道内气流方向相一致。采用感温元件控制的防火阀,其动作温度高于通风系统在正常工作的最高温度(45℃)时,宜取70℃。根据现行国家标准《建筑通风和排烟系统用防火阀门》GB并参考国外有关标准,本条规定防火阀的公称动作温度应为70℃。为使防火阀能及时关闭,控制防火阀关闭的易熔片或其它感温元件应设在容易感温的部位。设置防火阀的通风管要求具备一定强度,设置防火阀处要设置单独的支吊架,以防止管段变形。在暗装时,需在安装部位设置方便检修的检修口,参见图0。

图0防火阀检修口设置示意图

3为保证防火阀能在火灾条件下发挥预期作用,穿过防火墙两侧各m范围内的风管绝热材料需釆用不燃材料且具备足够的刚性和抗变形能力,穿越处的空隙要用不燃材料或防火封堵材料严密填实。

9.3.4除下列情况外,通风、空气调节系统的风管应采用不燃材料:

接触腐蚀性介质的风管和柔性接头可采用难燃材料;

体育馆、展览馆、候机(车、船)建筑(厅)等大空间建筑,单、多层办公建筑和丙、丁、戊类厂房内通风、空气调节系统的风管,当不跨越防火分区且在穿越房间隔墙处设置防火阀时,可采用难燃材料。

9.3.4国内外均有不少因通风、空调系统风管因可燃而致蔓延,造成重大的人员和财产损失的案例,故本条规定通风、空调系统的风管应采用不燃材料制作。

本条规定参考了国外有关标准,考虑了我国有关防火分隔的具体要求及应用实例,如一些大空间民用或工业生产场所。设计要注意控制材料的燃烧性能及其发烟性能和热解产物的毒性。在风管内设置电加热器时的联动控制,是在检测到电加热器运行异常或管道内的环境异常时,应对风机和电加热器进行联动,如设置无风断电保护及风温过高断电保护联动控制等。

9.3.5设备和风管的绝热材料、用手加湿器的加湿材料、消声材料及其粘结剂,宜采用不燃材料,确有困难时,可采用难燃材料。

风管内设置电加热器时,电加热器的开关应与风机的启停联锁控制。电加热器前后各0.8m范围内的风管和穿过有高温、火源等容易起火房间的风管,均应采用不燃材料。

9.3.5加湿器的加湿材料常为可燃材料,这给类似设备留下了一定火灾隐患。因此,风管和设备的绝热材料、用于加湿器的加湿材料、消声材料及其粘接剂,应采用不燃材料。在采用不燃材料确有困难时,允许有条件地采用难燃材料。

为防止通风机已停而电加热器继续加热引起过热而着火,电加热器的开关与风机的开关应进行联锁,风机停止运转,电加热器的电源亦应自动切断。同时,电加热器前后各mm的风管采用不燃材料进行绝热,穿过有火源及容易着火的房间的风管也应采用不燃绝热材料。目前,不燃绝热材料、消声材料有超细玻璃棉、玻璃纤维、岩棉、矿渣棉等。难燃材料有自熄性聚氨脂泡沫塑料、自熄性聚苯乙烯泡沫塑料等。

9.3.6燃油或燃气锅炉房应设置自然通风或机械通风设施。燃气锅炉房应选用防爆型的事故排风机。当采取机械通风时,机械通风设施应设置导除静电的接地装置,通风量应符合下列规定:

燃油锅炉房的正常通风量应按换气次数不少于3次/h确定,事故排风量应按换气次数不少于6次/h确定;

燃气锅炉房的正常通风量应按换气次数不少于6次/h确定,事故排风量应按换气次数不少于次/h确定。

9.3.6本条为强制性标准条文。本条所指锅炉房包括燃油、燃气的热水、蒸汽锅炉房和直燃型溴化锂冷(热)水机组的机房。

燃油、燃气锅炉房在使用过程中存在逸漏或挥发的可燃性气体,要在这些房间内通过自然通风或机械通风方式保持良好的通风条件,使逸漏或挥发的可燃性气体与空气混合气体的浓度不能达到其爆炸下限值的5%。燃油锅炉所用油的闪点温度一般高于60℃,油泵房内的温度不大会高于60℃,不存在爆炸危险。机房的通风量可按泄漏量计算或按换气次数计算,具体设计票求参见现行国家标准《锅炉房设计规范》GB-第5.3节有关燃油、燃气锅炉房的通风要求。0电气0.消防电源及其配电

0..下列建筑物、储罐(区)和堆场的消防用电应按一级负荷供电:

建筑高度大于50m的乙、丙类厂房和丙类仓库;

一类高层民用建筑。

0..本条为强制性标准条文。消防用电的可靠性是保证建筑消防设施可靠运行的基本保证。本条根据建筑扑救难度和建筑的功能及其重要性以及建筑发生火灾后可能的危害与损失、消防设施的用电情况,确定了建筑中的消防用电设备要求按一级负荷进行供电的建筑范围。

本规范中的“消防用电”包括消防控制室照明、消防水泵、消防电梯、防烟排烟设施、火灾探测与报警系统、自动灭火系统或装置、疏散照明、疏散指示标志和电动的防火门窗、卷帘、阀门等设施、设备在正常和应急情况下的用电。

0..下列建筑物、储罐(区)和堆场的消防用电应按二级负荷供电:

室外消防用水量大于30L/s的厂房(仓库);

室外消防用水量大于35L/s的可燃材料堆场、可燃气体储罐(区)和甲、乙类液体储罐(区);

3粮食仓库及粮食筒仓;

4二类高层民用建筑;

5座位数超过个的电影院、剧场,座位数超过个的体育馆,任一层建筑面积大于m的商店和展览建筑,省(市)级及以上的广播电视、电信和财贸金融建筑,室外消防用水量大于5L/s的其他公共建筑。

0..本条为强制性标准条文。本条规定了需按二级负荷要求对消防用电设备供电的建筑范围。说明参见第0.0.条。

0..3除本规范第0..和0..条外的建筑物、储罐(区)和堆场等的消防用电可按三级负荷供电。

0..4消防用电按一、二级负荷供电的建筑,当釆用自备发电设备作备用电源时,自备发电设备应设置自动和手动启动装置。当采用自动启动方式时,应能保证在30s内供电。

不同级别负荷的供电电源应符合现行国家标准《供配电系统设计规范》GB5的规定。

0..4消防用电设备的用电负荷分级可参见现行国家标准《供配电系统设计规范》GB5的规定。此外,为尽快让自备发电设备发挥作用,对备用电源的设置及其启动作了要求。根据目前我国的供电技术条件,规定其采用自动启动方式时,启动时间不应大于30s。

.根据国家标准《供配电系统设计规范》的要求,一级负荷供电应由两个电源供电,且应满足下述条件:

)当一个电源发生故障时,另一个电源不应同时受到破坏;)—级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。应急电源可以是独立于正常电源的发电机组、供电网中独立于正常电源的专用的馈电线路、蓄电池或干电池。

结合目前我国经济和技术条件、不同地区的供电状况以及消防用电设备的具体情况,具备下列条件之一的供电,可视为一级负荷:

)电源来自两个不同发电厂;)电源来自两个区域变电站(电压一般在35kV及以上);3)电源来自一个区域变电站,另一个设置自备发电设备。

建筑的电源分正常电源和备用电源两种。正常电源一般是直接取自城市低压输电网,电压等级为V/0V。备用电源有取自城市两路高压供电,其中一种为备用电源;有的取自城市一路高压(0kV级)供电,另一种取自自备柴油发电机等等。国外一般使用自备发电机设备和蓄电池作消防备用电源。如有条件,只要符合规定负荷等级和供电要求,也可采用上述电源作为消防用电设备的备用电源。

3.二级负荷的供电系统,要尽可能采用两回线路供电。在负荷较小或地区供电条件困难时,二级负荷可以采用一回6KV及以上专用的架空线路或电缆供电。当采用架空线时,可为一回架空线供电;当采用电缆线路,应釆用两根电缆组成的线路供电,其每根电缆应能承受00%的二级负荷。

4.三级负荷供电是建筑供电的最基本要求,有条件的建筑要尽量通过设置两台终端变压器来保证建筑的消防用电。

0..5建筑内消防应急照明和灯光疏散指示标志的备用电源的连续供电时间应符合下列规定:

建筑高度大于00m的民用建筑,不应小于.5h;

医疗建筑、老年人照料设施、总建筑面积大于m的公共建筑,不应少于.0h;

3其他建筑,不应少于0.5h。

0..5本条为强制性标准杂文。疏散照明和疏散指示标志是保证建筑中人员疏散安全的重要保障条件,应急备用照明主要用予建筑中消防控制室、重要控制室等一些特别重要岗位的照明。在火灾时,在一定时间内持续保障这些照明,十分必要和重要。

本规范中的“消防应急照明”是指火灾时的疏散照明和备用照明。对于疏散照明备用电源的连续供电时间,试验和火灾证明,单、多层建筑和部分高层建筑着火时,人员一般能在0min以内疏散完毕。本条规定的连续供电时间,考虑了一定安全系数以及实际人员疏散状况和个别人员疏散困号严难等情况。对于建筑高度大于00m的民用建筑、医院等场所和大型公共建筑等,由于疏散人员体质弱、人员较多或疏散距离校长,会出现疏散时间较长的情况,故对这些场所的连续供电时间要求有所提高。通常,自备独立电源的应急照明方式具有较高的可靠性。但鉴于当前我国这类设施的实际使用情况,为保证应急照明和疏散指示标志用电的安全可靠,设计要尽可能采用集中供电方式。应急备用电源无论采用何种方式,均需在主电源断电后能立即自动投入,并保持连续供电,功率能满足所有应急用电照明和疏散指示标志在设计供电时间内连续供电的要求。

0..6消防用电设备应采用专用的供电回路,当建筑内的生产、生活用电被切断时,应仍能保证消防用电。

备用消防电源的供电时间和容量,应满足该建筑火灾延续时间内各消防用电设备的要求。

0..6本条为强制性标准条文。本条要求是保证消防用电供电可靠性的一项重要措施。实践中,尽管电源可靠,但消防设备的配电线路不可靠,仍不能保证消防用电设备的供电可靠性。

建筑火灾可能会造成电气线路短路和其它设备着火,电气线路可能使火势蔓延扩大,还可在救火中因触及带电设备或线路等漏电,造成人员伤亡。根据实战需要,消防员到达火场进行灭火时,一般要先切断正常供电电源。如果建筑正常用电与消防用电的配电线路混合敷设,不易分清消防用电设备的配电线路,很容易导致消防用电设备不能正常运行。因此,本条规定消防用电设备均应采用专用的(即单独的)供电回路,电源直接取自建筑内设置的配电室的母线,当切断(停电)工作电源时,消防电源不受影响,保证灭火救援和消防设备的正常运行。对于建筑的低压配电系统主接线方案,目前在国内建筑电气工程中采用的设计方案有不分组设计和分组设计两种。对于不分组方案,常见消防负荷采用专用母线段,但消防负荷与非消防负荷工用同一进线断路器或消防负荷与非消防负荷共用同一进线断路器和用一低压母线段。这种方案具有主接线简单、造价较低的优点,但这种方案使消防最荷受非消防负荷故障的影响较大,供电可靠性不高。对于分组设计方案,消防供电电源是从建筑的变电站低压侧封闭母线处将消防电源分出,形成各自独立的系统,参见图。如果建筑的配电为低压电缆进钱,则从进线隔离电器下端将消防电源和非消防电源分开,使得消防电源相对建筑而言是独立的。这种方案虽增加了断路器,主接线较不分组方案复杂,但提高了消防供电的可靠性。当采用柴油发电机作为泪防设备的备用电源时,要尽量设计独立的供电回路,使电源能直接与消防用电设备连接,参见图l。

图消防用电设备电源在变压器低压出线端设置单独主断路器示意

本条规定的“供电回路”,是指从低压总配电室或分配电室至消防设备或消防设备室(如消防水泵房、消防控制室、消防电梯机房等)最末级配电箱的配电线路。对于消防设备的备用电源,通常有三种:)独立于工作电源的市电回路,)柴油发电机,3)应急供电电源(EPS)。这些备用电源的供电时间和容量,均要求满足各消防用电设备设计持续运行时间最长者的要求,特别是采用应急照明灯中自带蓄电池作疏散照明的应急备用电源时,其电池组初装容量要满足国家现行标准《消防应急照明灯具通用技术条件》GA54规定的90min要求。

图柴油发电机作为消防设备的备用电源的配电系统分组方案

0..7消防配电干线宜按防火分区划分,消防配电支线不宜穿越防火分区。

0..8消防控制室、消防水泵房、防烟和排烟风机房的消防用电设备及消防电梯等的供电,应在其配电线路的最末一级配电箱处设置自动切换装置。

0..8本条为强制性标准条文。本条要求也是保证消防用电供电可靠性的一项重要措施。

本条规定的最末二级配电箱对于消防控制室、消防水泵房、防烟和排烟风机房的消防用电设备及消防电梯等,为上述消防设备或消防设备室处的最末级配电箱;对于其他消防设备用电,如消防应急照明和疏散指示标志等,为这些用电设备所在防火分区的配电箱。

0..9按一、二级负荷供电的消防设备,其配电箱应独立设置;按三级负荷供电的消防设备,其配电箱宜独立设置。

消防配电设备应设置明显标志。

0..9本条规定旨在保证消防用电设备配电箱的防火安全和使用的可靠性。

火场的温度往往很高,如果安装在建筑中的消防设备的配电箱和控制箱无防火保护措施,当箱体内温度达到00℃及以上时,箱内器元件的外壳就会变形跳闸,不能保证消防供电。对消防设备的配电箱和控制箱应采取防火隔离措施,可以较好地确保火灾时配电箱和控制箱不会因为自身防护不好而影响消防设备正常运行。通常的防火保护措施有:将普通配电箱和控制箱安装在符合防火要求的配电间或控制间内;采用内衬岩棉对箱体进行防火保护。

0..0消防配电线路应满足火灾时连续供电的需要,其敷设应符合下列规定:

明敷时(包括敷设在吊顶内)应穿金属导管或采用封闭式金属槽盒保护,金属导管或封闭式金属槽盒应采取防火保护措施;当采用阻燃或耐火电缆并敷设在电缆井、沟内时,可不穿金属导管或采用封闭式金属槽盒保护;当采用矿物绝缘类不燃性电缆时,可直接明敷;

暗敷时,应穿管并应敷设在不燃性结构内且保护层厚度不应小于30mm;

3消防配电线路宜与其他配电线路分开敷设在不同的电缆井、沟内;确有困难需敷设在同一电缆井、沟内时,应分别布置在电缆井、沟的两侧,且消防配电线路应采用矿物绝缘类不燃性电缆。

0..0本条第、款为强制性标准条文。本条规定主要为保证消防设备供电线路的防火安全。

在建筑内敷设的消防用电设备配电线路,国外有关标准均对其有较严格的防火安全要求。如日本电气规范要求消防用电设备的配电线路要根据不同消防设备和配电线路分别选用耐火电线电缆或耐热电线电缆。耐火电线电缆,系指按照规定的时间-温度标准曲线进行受火测试,升温达到℃时,在30min内仍能继续有效供电的电线电缆。耐热电线电缆,系指按照规定的标准温升曲线(/的曲线)进行受火测试,升温到℃时,能在5min内仍继续供电的电线电缆。英国规范和美国规范也均有类似的规定。目前国内有不少类型的阻燃、耐火和耐热型电线电缆。有的遇热时产生有毒气体量小,有的抗冲击能力较好,有的高温下负荷运行能力较高,有的既具有较强的抗冲击能力又能在高温下可靠地负荷运行。因此,设计应针对不同场所选用相应的电线电缆。对于消防用电设备配电线路的保护,比较经济、安全的敷设方法一般是采用穿金属导管后埋设在不燃结构内。目前,国家对耐火电线、电缆和阻燃电线、电缆的测试均有相应的标准。试验情况表明,按照标准温升曲线进行受火测试,30mm厚的保护层在5min内,金属导管的温度可达05℃;30min时,达到0℃;到45min时,可达90℃。金属达到该温度时,配电线路的温度约比上述温度低/3,在此温升范围内能保证继续供电。另外,采用穿金属导管暗敷设,保护层厚度达到30mm以上的线路在火灾中也能够保障继续供电。但有些结构的建筑,如钢筋混凝土装配式建筑或建筑某些部位,配电线路只能明敷。但明敷易受火或高温直接作用,故规定明敷设时要釆取防火保护措施,如在保护管外表面涂刷丙烯酸乳胶防火涂料或采用隔热材料包覆等。矿物绝缘电缆是一种由铜芯、矿物绝缘、铜护套组成,必要时在铜护套外面挤包一层低烟无卤阻燃外护套,能符合国家标准《额定电压V及以下矿物绝缘电缆及终端》GB.-3的电缆,具有良好的导电性能、机械物理性能和耐火性能等特点,在火灾条件下不产生或少量产生烟雾,不产生有害气体。“阻燃电缆”和“耐火电缆”为符合国家现行标准《阻燃及耐火电缆:塑料绝缘阻燃及耐火电缆分级和要求》GA.-.的电缆。但阻燃电缆抗失效的能力低于耐火电缆,在电缆井和电缆沟内的阻燃电缆敷设时要注意与其它类电缆分隔开,以免其它电缆失火导致其燃烧短路。采用符合现行国家标准《电线电缆耐火特性试验方法》GB.6的耐火电缆能提高消防配电线路的耐火能力,但在模拟实体试验中,普通电缆、阻燃电缆、阻燃隔氧层电缆及耐火电缆,在明敷及穿钢管并施防火涂料保护时,持续供电时间均未达到30min。这对于消防控制室、消防水泵、消防电梯、防排烟设施等供电时间较长的消防设备供电是不利的。此外,明敷时不能承受中重物坠落和喷淋水冲击的影响。因此,设计对一些重要建筑或场所内的供电线路或某些重要供电线路尽量采用矿物绝缘铜护套电缆。0.电力线路及电器装置

0..架空电力线与甲、乙类厂房(仓库),可燃材料堆垛,甲、乙、丙类液体储罐,液化石油气储罐,可燃、助燃气体储罐的最近水平距离应符合表0..的规定。

35kV及以上架空电力线与单罐容积大于00m3或总容积大于m3液化石油气储罐(区)的最近水平距离不应小于40m。

表0..架空电力线与甲、乙类厂房(仓库)、可燃材料堆垛等的最近水平距离(m)

名称

架空电力线

甲、乙类厂房(仓库)可燃材料堆垛,甲、乙类液体储,液化石油气储罐,可燃、助燃气体储罐

电杆(塔)高度的.5倍

直埋地下的甲、乙类液体储罐和可燃气体储罐

电杆(塔)高度的0.75倍

丙类液体储罐

电杆(塔)高度的.倍

直埋地下的丙类液体储罐

电杆(塔)高度的0.6倍

0..本条为强制性标准条文。本条规定的甲、乙类厂房、甲、乙类仓库,可燃材料堆垛,甲、乙、丙类液体储罐,液化石油气储罐和可燃、助燃气体储罐,均为容易引发火灾且难以扑救的场所和建筑。本条确定的这些场所或建筑与电力架空线的最近水平距离,主要考虑了架空电力线在倒杆断线时的危害范围。

据调查,架空电力线倒杆断线现象多发生在刮大风特别是刮台风时。据起倒杆、断线事故统计,倒杆后偏移距离在m以内的6起,m-4m的4起,半杆高的4起,一杆高的4起,.5倍杆高的起,倍杆高的起。对于采用塔架方式架设电线时,由于顶部用于稳定部分较高,该杆高可按高度最高一路调设线路的吊杆距地高度计算。储存丙类液体的储罐,当液体的闪点不低于60℃时,在常温下挥发可燃蒸气少,蒸气扩散达到燃烧爆炸范围的可能性更小。对此,可按不少于.倍电杆(塔)高的距离确定。对于容积大的液化石油气单罐,实践证明,保持与高压架空电力线.5倍杆(塔)高的水平距离,难以保障安全。因此,本条规定35kV以上的高压电力架空线与单罐容积大于00m3液化石油气储罐或总容积大于m3的液化石油气储罐区的最小水平间距,当根据表0..的规定按电杆或电塔高度的.5倍计算后,距离小于40m时,仍需要按40m确定。对于地下直埋的储罐,无论储存的可燃液体或可燃气体的物性如何,均因这种储存方式有较高的安全性、不易大面积散发可燃蒸气或气体,该储罐与架空电力线路的距离可在相应规定距离的基础上减小一半。

0..电力电缆不应和输送甲、乙、丙类液体管道、可燃气体管道、热力管道敷设在同一管沟内。

0..在厂矿企业、特别是大、中型工厂中,将电力电缆与输送原油、苯、甲醇、乙醇、液化石油气、天然气、乙炔气、煤气等各类可燃气体、液体管道敷设在同一管沟内的现象较常见。由于上述液体或气体泄漏、电缆绝缘老化、线路出现破损、产生短路等原因,可能引发火灾或爆炸事故。对于架空的开敞管廊,电力电缆的敷设应按相关专业规范的规定执行。一般可布置同一管廊中,但应根据甲、乙、丙类液体或可燃气体的性质,与输送管道分开布置在管廊的两侧或不同标高层中。

0..3配电线路不得穿越通风管道内腔或直接敷设在通风管道外壁上,穿金属导管保护的配电线路可紧贴通风管道外壁敷设。

配电线路敷设在有可燃物的闷顶、吊顶内时,应釆取穿金属导管、采用封闭式金属槽盒等防火保护措施。

0..3本条规定主要防止上述原因引发的火灾。低压配电线路因使用时间长绝缘老化,产生短路着火或因接触电阻大而发热不散。因此,规定了配电线路不应敷设在金属风管内,但采用穿金属导管保护的配电线路,可以紧贴风管外壁敷设。过去发生在有可燃物的闷顶(吊顶屋盖或上部楼扳之间的空间)或吊顶内的电气火灾,大多因未采取穿金属导管保护,电线使用年限长、绝缘老化,产生漏电着火或电线过负荷运行发热着火等情况而引起。

0..4开关、插座和照明灯具靠近可燃物时,应采取隔热、散热等防火措施。

卤钨灯和额定功率不小于00W的白炽灯泡的吸顶灯、槽灯、嵌入式灯,其引入线应采用瓷管、矿棉等不燃材料作隔热保炉。额定功率不小于60W的白炽灯、卤钨灯、高压钠灯、金属卤化物灯、荧光高压汞灯(包括电感镇流器)等,不应直接安装在可燃物体上或采取其他防火措施。

0..4.本条为强制性标准条文。本条规定主要为预防和减少因照明器表面的高温部位靠近可燃物所引发的火灾。卤钨灯(包括碘钨灯和溴钨灯〉的石英玻璃表面温度很高,如W的灯管温度高达℃-℃,很容易烤燃与其靠近的纸、布、干的木构件等可燃物。吸顶灯、槽灯、嵌入式灯等采用功率不小于00W的白炽灯泡的照明灯具和大于60W的白炽灯、卤钨灯、荧光高压汞灯、高压钠灯、金属卤灯光源等灯具,使用时间较长时,引入线及灯泡的温度会上升,甚至到00℃以上。本条规定旨在防止高温灯泡引燃可燃物,而要求采用瓷管、石棉、玻璃丝等不燃烧材料将这些灯具的引入线与可燃物隔开。根据试验,不同功率的白炽灯的表面温度及其烤燃可燃物的时间、温度,见表9。

表9白炽灯泡将可燃物烤至着火的时间、温度

灯泡功率

(W)

摆放形式

可燃物

烤至着火的时间(min)

烤至着火的温度(℃)

备注

75

卧式

稻草

-

埋入

00

卧式

稻草

34-

紧贴

00

垂式

稻草

50

碳化

紧贴

00

卧式

稻草

埋入

00

垂式

棉絮被套

3

-

紧贴

00

卧式

乱纸

8

-

埋入

00

卧式

稻草

8

紧贴

00

卧式

乱稻草

4

34

紧贴

00

卧式

稻草

埋入

00

垂式

玉米秸

5

埋入

00

垂式

纸张

紧贴

00

垂式

多层报纸

5

-

紧贴

00

垂式

松木箱

57

紧贴

00

垂式

棉被

5

紧贴

0..5可燃材料仓库内宜使用低温照明灯具,并应对灯具的发热部件釆取隔热等防火措施,不应使用卤钨灯等高温照明灯具。

配电箱及开关应设置在仓库外。

0..5本条是根据《仓库防火安全管理规则》(公安部令第6号〉的规定确定的。

0..6爆炸危险环境电力装置的设计应符合现行国家标准《爆炸危险环境电力装置设计规范》GB58的规定。

0..7老年人照料设施的非消防用电负荷应设置电气火灾监控系统。下列建筑或场所的非消防用电负荷宜设置电气火灾监控系统:

建筑高度大于50m的乙、丙类厂房和丙类仓库,室外消防用水量大于30L/s的厂房(仓库);

一类高层民用建筑;

3座位数超过个的电影院、剧场,座位数超过个的体育馆,任一层建筑面积大于m的商店和展览建筑,省(市)级及以上的广播电视、电信和财贸金融建筑,室外消防用水量大于5L/s的其他公共建筑;

4国家级文物保护单位的重点砖木或木结构的古建筑。

0..7本条规定了有条件时需要设置电气火灾监控系统的建筑范围,电气火灾监控系统的设计请见国家标准《火灾自动报警系统设计规范》GB。为提高老年人照料设施预防火灾的能力,要求此类场所的非消防用电负荷设置电气火灾监控系统。

电气原因引起的火灾,多年来一直是我国建筑火灾的主要原因。电气火灾隐患形成和存留时间长,且不易发现,一旦引发火灾往往造成很大损失。根据有关统计资料,我国的电气火灾大部分是由电气线路直接或间接引起的。电气火灾监控系统类型较多,本条规定主要指剩余电流动作电气火灾监控系统,一般由电流互感器、漏电探测器、漏电报警器组成。该系统能监控电气线路的故障和异常状态,发现电气火灾隐患,及时报警以消除这些隐患。由于我国存在不同的接地系统,在设置剩余电流动作电气火灾监控系统时,应注意区别对待。如在接地型式为TN-C的系统中,就要将其改造为TN-C-S、TN-S或局部TT系统后,才可以安装使用报警式剩余电流保护装置。0.3消防应急照明和疏散指示标志

0.3.除建筑高度小于7m的住宅建筑外,民用建筑、厂房和丙类仓库的下列部位应设置疏散照明:

封闭楼梯间、防烟楼梯间及其前室、消防电梯间的前室或合用前室、避难走道、避难层(间);

观众厅、展览厅、多功能厅和建筑面积大于00m的营业厅、餐厅、演播室等人员密集的场所;

3建筑面积大于00m的地下或半地下公共活动场所;

4公共建筑内的疏散走道;

5人员密集的厂房内的生产场所及疏散走道。

0.3.本条为强制性标准条文。设置疏散照明可以使人们在正常照明电源被切断后,仍然以较快的速度逃生,是保证和有效引导人员疏散的设施。本条规定了建筑内应设置疏散照明的部位,这些部位主要为人员安全疏散必须经过的重要节点部位和建筑内人员相对集中、人员疏散时易出现拥堵情况的场所。

对于本规范未明确规定的场所或部位,设计师应根据实际情况,从有利于人员安全疏散需要出发考虑设置疏散照明,如生产车间、仓库、重要办公楼中的会议室等。

0.3.建筑内疏散照明的地面最低水平照度应符合下列规定:

对于疏散走道,不应低于.0Lx;

对于人员密集场所、避难层(间),不应低于3.0Lx;对于老年人照料设施、病房楼或手术部的避难间,不应低于0.0Lx;

3对于楼梯间、前室或合用前室、避难走道,不应低于5.0Lx。对于人员密集场所、老年人照料设施、病房楼或手术部内的楼梯间、前室或合用前室、避难走道,不应低于0.0lx。

0.3.本条为强制性标准条文。本条规定的区域均为疏散过程中的重要过渡区或视作室内的安全区,适当提高疏散应急照明的照度值,可以大大提高人员的疏散速度和安全疏散条件,有效减少人员伤亡。

本条规定设置消防疏散照明场所的照度值,考虑了我国各类建筑中暴露出来的一些影响人员疏散的问题,参考了美国、英国等国家的相关标准,但仍较这些国家的标准要求低。因此,有条件的,要尽量增加该照明的照度,从而提高疏散的安全性。

0.3.3消防控制室、消防水泵房、自备发电机房、配电室、防排烟机房以及发生火灾时仍需正常工作的消防设备房应设置备用照明,其作业面的最低照度不应低于正常照明的照度。

0.3.3本条为强制性标准条文。消防控制室、消防水泵房、自备发电机房等是要在建筑发生火灾时继续保持正常工作的部位,故消防应急照明的照度值仍应保证正常照明的照度要求。这些场所一般照明标准值参见现行国家标准《建筑照明设计标准》GB34的有关规定。

0.3.4疏散照明灯具应设置在出口的顶部、墙面的上部或顶棚上;备用照明灯具应设置在墙面的上部或顶棚上。

0.3.5公共建筑、建筑高度大于54m的住宅建筑、高层厂房(库房)和甲、乙、丙类单、多层厂房,应设置灯光疏散指示标志,并应符合下列规定:

应设置在安全出口和人员密集的场所的疏散门的正上方;

应设置在疏散走道及其转角处距地面高度.0m以下的墙面或地面上。灯光疏散指示标志的间距不应大于0m;对于袋形走道,不应大于0m;在走道转角区,不应大于.0m。

0.3.4-0.3.5应急照明的设置位置一般有:设在楼梯间的墙面或休息平台板下,设在走道的墙面或顶棚的下面,设在厅、堂的顶棚或墙面上,设在楼梯口、太平门的门口上部。

日本和英国相关建筑规施对应急照明灯和疏散诱导灯设置位置的规定较为具体,图所示为日本有关规范的规定。

图疏散照明和疏散诱导灯设置位置

对于疏散指示标志的安装位置,是根据国内外的建筑实践和火灾中人的行为习惯提出的。具体设计还可结合实际情况,在规范规定的范围内合理选定安装位置,比如也可设置在地面上等。总之,所设置的标志要便于人们辨认,并符合一般人行走时目视前方的习惯,能起诱导作用,但要防止被烟气遮挡,如设在顶棚下的疏散标志应考虑距离顶棚一定高度。目前,在一些场所设置的标志存在不符合按照现行国家标准《消防安全标志》GB规定的现象,如将“疏散门”标成“安全出口”,“安全出口”标成“非常口”或“疏散口”等,还有的疏散指示方向混乱等。因此,有必要明确建筑中这些标志的设置要求。对于疏散指示标志的间距,设计时还要根据标志的大小和发光方式以及便于人员在较低照度条件清楚识别的原则进一步缩小。

0.3.6下列建筑或场所应在疏散走道和主要疏散路径的地面上增设能保持视觉连续的灯光疏散指示标志或蓄光疏散指示标志:

总建筑面积大于0m的展览建筑;

总建筑面积大于m的地上商店;

3总建筑面积大于m的地下或半地下商店;

4歌舞娱乐放映游艺场所;

5座位数超过个的电影院、剧场,座位数超过个的体育馆、会堂或礼堂。

0.3.6本条要求展览建筑、商店、歌舞娱乐放映游艺场所、电影院、剧场和体育馆等大空间或人员密集的公共场所的建筑设计,应在这些场所内部疏散走道和主要疏散路线的地面上增设能保持视觉连续的疏散指示标志。该标志是辅助疏散指示标志,不能作为主要的疏散指示标志。

疏散指示标志的合理设置,能更好地帮助人员快速、安全地进行疏散。对于空间较大的场所,人们在火灾时依靠疏散照明的照度难以看清较大范围的情况,依靠行走路线上的疏散指示标志,可以及时识别疏散位置和方向,缩短到达安全出口的时间。

0.3.7建筑内设置的消防疏散指示标志和消防应急照明灯具,除应符合本规范的规定外,还应符合现行国家标准《消防安全标志》GB和《消防应急照明和疏散指示系统》GB的规定。

木结构建筑

.0.木结构建筑的防火设计应符合本章的规定,建筑构件的燃烧性能和耐火极限应符合表.0.的规定。

表.0.木结构建筑构件的燃烧性能和耐火极限

构件名称

燃烧性能和耐火极限(h)

防火墙

不燃性3.00

承重墙,住宅建筑单元之间的墙和分户墙,楼梯间的墙

难燃性.00

电梯井的墙

不燃性.00

非承重外墙,疏散走道两侧的隔墙

难燃性0.75

房间隔墙

难燃性0.50

承重柱

可燃性.00

可燃性.00

楼板

难燃性0.75

屋顶承重构件

可燃性0.50

疏散楼梯

难燃性0.50

吊顶

难燃性0.5

注:

除本规范另有规定外,当同一座木结构建筑存在不同高度的屋顶时,较低部分的屋顶承重构件和屋面不应采用可燃性构件,采用难燃性屋顶承重构件时,其耐火极限不应低于0.75h。

轻型木结构建筑的屋顶,除防水层、保温层及屋面极外,其他部分均应视为屋顶承重构件,且不宜采用可燃性构件,耐火极限不应低于0.50h。

3当建筑的层数不超过层、防火墙间的建筑面积小于m且防火墙间的建筑长度小于60m时,建筑构件的燃烧性能和耐火极限可按本规范有关四级耐火等级建筑的要求确定。

.0.本条规定了木结构建筑主要构件的燃烧性能和耐火极限。

表.0.中有关电梯井的墙、非承重外墙、疏散走道两侧的隔墙、承重柱、梁、楼板、屋顶承重构件及吊顶的燃烧性和耐火极限的要求,主要依据我国对承重柱、梁、楼板等主要木结构构件的耐火试验数据,并参考国外建筑规范的有关规定,结合我国对材料燃烧性能和构件耐火极限的试验要求而确定的。在确定木结构构件的燃烧性能和耐火极限时,考虑了现代木结构建筑的特点、我国建筑耐火等级分级、不同耐火等级建筑构件的燃烧性能和耐火极限及与现行国家相关标准的协调,力求做到科学、合理、可行。电梯井内一般敷设有电线电缆,同时也可能成为火灾竖向蔓延的通道,具有较大的火灾危险性,但木结构建筑的楼层通常较低,即使与其他结构类型组合建造的木结构建筑,其建筑高度也不大于4m。因此,在本条的表0.0..中,将电梯井的墙体确定为不燃性墙体,并比照本规范对木结构建筑中承重墙的耐火极限要求确定了其耐火极限,即不应低于.00h。3木结构建筑中的梁和柱,主要釆用胶合木或重型木构件,属于可燃材料。国内外进行的大量相关耐火试验表明,胶合木或重型木构件受火作用时,会在木材表面形成—定厚度的炭化层,并可因此降低木材内部的烧蚀速度,且炭化速率在标准耐火试验条件下基本保持不变。因此,设计可以根据不同种木材的炭化速率、构件的设计耐火极限和设计荷载来确定梁和柱的设计截面尺寸,只要该截面尺寸预留了在实际火灾时间内可能被烧蚀的部分,承载力就可满足设计要求。此外,为便于在工程中能尽可能地体现胶合木或原木的美感,本条规定允许梁和柱采用不经防火处理的木构件。

4当同一座木结构建筑由不同高度部位的结构组成时,考虑到较低高度部分的结构友生火灾时,火焰会向较高部分的外墙蔓延;或者较高部分的结构发生火灾时,飞火可能掉落到较低部分的屋顶,存在火灾从外向内蔓延的可能,故要求较低部分的屋顶承重构件和屋面面层不能采用可燃材料。

5轻型木结构屋顶承重构件的截面尺寸一般较小,耐火时间较短。为了确保轻型木结构建筑屋顶承重构件的防火安全,本条要求将屋顶承重构件的燃烧性能提高到难燃。在工程中,一般采用在结构外包覆耐火石膏板等防火保护方法来实现。6为便于设计,在本条文说明附录中列出了木结构建筑主要构件达到规定耐火极限和燃烧性能的构造方法,这些数据源自公安部天津消防研究所对木结构墙体、楼板、吊顶和胶合木梁、柱的耐火试验结果。设计时,对于与附录中所列情况完全一样的构件可以直接采用;如果存在较大变化,则需按照理论计算和试验测试验证相结合的方法确定所设计木构件的耐火极限。7注3的规定主要为与本规范第5..和5.3.l条的要求协调一致。

.0.建筑采用木骨架组合墙体时,应符合下列麵定:

建筑高度不大于8m的住宅建筑、建筑高度不大于4m的办公建筑和丁、戊类厂房(库房)的房间隔墙和非承重外墙可采用木骨架组合墙体,其他建筑的非承重外墙不得采用木骨架组合墙体;

墙体填充材料的燃烧性能应为A级;

3木骨架组合墙体的燃烧性能和耐火极限应符合表.0..的规定,其他要求应符合现行国家标准《木骨架组合墙体技术规范》GB/T的规定。

表.0.木骨架组合墙体的燃烧性能和耐火极限(h)

构件名称

建筑物的耐火等级或类型

一级

二级

三级

木结构建筑

四级

非承重外墙

不允许

难燃性.5

难燃性0.75

难燃性0.75

无要求

房间隔墙

难燃性.00

难燃性0.75

难燃性0.50

难燃性0.50

难燃性0.5

.0.本条为在国家标准《术骨架组合墙体技术规范》GB/T-第4.5.3条、第5.6.l-5.6.条规定的基础上修改部分文字而成。木骨架组合墙体由木骨架外覆石膏板或其他耐火板材、内填充岩棉等隔音、绝热材料构成。根据试验结果,木骨架组合墙体只能满足难燃性墙体的相关性能,所以本条既限制了采用该类墙体的建筑的使用功能,又限制了其建筑层数。

具有一定耐火性能的非承重外墙可有效防止火灾在建筑间的相互蔓延或通过外墙上、下蔓延。为防止火势通过木骨架组合墙体内部进行蔓延,本条要求其墙体填充材料的燃烧性能要不能低于A级,即采用不燃性绝热和隔音材料。对于木骨架墙体应用中的更详细要求,见国家标准《木骨架组合墙体技术规范》GB/T。

.0.3丁、戊类厂房(库房)和民用建筑可采用木结构建筑或木结构组合建筑,其允许层数和允许建筑高度应符合表.0.3-的规定,木结构建筑中防火墙间的允许建筑长度和每层最大允许建筑面积应符合表.0.3-的规定。

表.0.3-木结构建筑或木结构组合建筑的允许层数和允许建筑高度

木结构建筑的形式

普通木结构建筑

轻型木结构建筑

胶合木结构建筑

木结构组合建筑

允许层数(层)

3

3

7

允许建筑高度(m)

0

0

不限

5

4

表.0.3-木结构建筑中防火墙间的允许建筑长度和每层最大允许建筑面积

层数(层)

防火墙间的允许建筑长度(m)

防火墙间的每层最大允许建筑面积(m)

00

80

3

60

注:

当设置自动喷水灭火系统时,防火墙间的允许建筑长度和每层最大允许建筑面积可按本表的规定增加.0倍,对于丁、戊类地上厂房,防火墙间的每层最大允许建筑面积不限。

体育场馆等高大空间建筑,其建筑高度和建筑面积可适当增加。

.0.3本条为强制性标准条文。控制木结构建筑的高度、层数和防火分区大小,是控制其火灾危害的重要手段。本条参考国外相关标准规定,根据我国实际情况规定了木结构建筑的应用范围和允许建筑规模。

从木结构建筑构件的耐火性能看,木结构建筑的耐火等级介于三级和四级之间。本规范规定四级耐火等级的建筑只允许建造两层。在本章规定的木结构建筑中,构件的耐火性能优于四级耐火等级的建筑,因此规定木结构建筑的允许层数为三层。本条表中规定的数值是在消化吸收国外有关规范和协调我国相关标准规定的基础上确定的。表.0.3-中“防火墙间的每层最大允许建筑面积”,指位于两道防火墙之间的一个楼层的建筑面积。如果建筑只有一层,则该防火墙间的建筑面积可允许m;如果建筑需要建造三层,则两道防火墙之间的每个楼层的建筑面积最大只允许m,使三个楼层的建筑面积之和不能大于单层时的最大允许建筑面积,即m。这一规定主要考虑到支撑楼板的柱、梁和竖向的分隔构件-楼板的燃烧性能较低,不能达到不燃的要求,因而,某一层着火后有可能导致位于两座防火墙之间的这3层楼均被烧毁。3由于体育场馆等高大空间建筑,室内空间高度高、建筑面积大,一般难以全部釆用木结构构件,主要为大跨度的梁和高大的柱可能釆用胶合木结构,其他部分还需采用混凝土结构等具有较好耐火性能的传统建筑结构,故对此类建筑做了调整。为确保建筑的防火安全,建筑的高度和面积的扩大的程度以及因扩大后需要采取的防火措施等,应该按照国家规定程序进行论证和评审来确定。

.0.4老年人照料设施,托儿所、幼儿园的儿童用房和活动场所设置在木结构建筑内时,应布置在首层或二层。

商店、体育馆、厂房(库房)应采用单层木结构建筑,并宜采用胶合木结构。

.0.4本条为强制性标准条文。本条规定是比照本规范第5.4.3-5.4.4条有关三级和四级耐火等级建筑的要求确定的。

商店、体育馆和厂(库)房等,因使用功能需要,往往要求较大的面积和较高的空间,胶合木具有较好的耐火承载力,用作柱和梁具有一定优势,无论外观与日常维护,还是实际防火性能均较钢材要好。本条对于木结构的商店、体育馆、厂房和仓库,只强制要求其采用单层的建筑。

.0.5除住宅建筑外,建筑内发电机间、配电间、锅炉间的设置及其防火要求,应符合本规范第5.4.条-第5.4.5条和第6..3条-第6..6条的规定。

.0.6设置在木结构住宅建筑内的机动车库、发电机间、配电间、锅炉间,应采用耐火极限不低于.00h的防火隔墙和.00h的不燃性楼板与其他部位分隔,不宜开设与室内相通的门、窗、洞口,确需开设时,可开设一樘不直通卧室的单扇乙级防火门。机动车库的建筑面积不宜大于60m。

.0.5-.0.6规定了建筑内火灾危险性较大部位的防火分隔要求,对因使用需要等而开设的门、窗或洞口,要求采取相应的防火保护措施,以限制火灾在建筑内蔓延。

条文中规定的车库,为小型住宅建筑中的自用车库。根据我国的实际情况,没有限制停放机动车的数量,而是通过限制建筑面积来控制附属车库的大小和可能带来的火灾危险。

.0.7民用木结构建筑的安全疏散设计应符合下列规定:

建筑的安全出口和房间疏散门的设置,应符合本规范第5.5节的规定。当木结构建筑的每层建筑面积小于00m且第二层和第三层的人数之和不超过5人时,可设置部疏散楼梯;

房间直通疏散走道的疏散门至最近安全出口的直线距离不应大于表.0.7-的规定;

表.0.7-房间直通疏散走道的疏散门至最近安全出口的直线距离(m)

名称

位于两个安全出口之间的疏散门

位于袋形走道两侧或尽端的疏散门

托儿所、幼儿园

5

0

歌舞娱乐放映游艺场所

5

6

医院和疗养院建筑、老年人照料设施、教学建筑

5

其它民用建筑

30

5

3房间内任一点至该房间直通疏散走道的疏散门的直线距离,不应大于表.0.7-中有关袋形走道两侧或尽端的疏散门至最近安全出口的直线距离;

4建筑内疏散走道、安全出口、疏散楼梯和房间疏散门的净宽度,应根据疏散人数按每00人的最小疏散净宽度不小于表.0.7-的规定计算确定;

表.0.7-疏散走道、安全出口、疏散楼梯和房间疏散门每00人的最小疏散净宽度(m/百人)

层数

地上-层

地上3层

每00人的疏散净宽度(m/百人)

0.75

.00

.0.7本条第、3、4款为强制性标准条文。本条是结合木结构建筑的整体耐火性能及其楼层的允许建筑面积,按照民用建筑安全疏散设计的原则,比照本规范第5章的有关规定确定的。本条表.0.7中的数据取值略小于三级耐火等级建筑的对应值。

.0.8丁、戊类木结构厂房内任一点至最近安全出口的疏散距离分别不应大于50m和60m,其他安全疏散要求应符合本规范第3.7节的规定。

.0.8根据本规范第.0.4条的规定,丁、戊类木结构厂房建筑只能建造一层,根据本规范第3.7节的规定,四级耐火等级的单层丁、戊类厂房内任一点到最近安全出口的疏散距离分别不应大于50m和60m。因此,尽管木结构建筑的耐火等级要稍高于四级耐火等级,但鉴于该距离较大,为保证人员安全,本条仍采用与本规范第3.7.4条规定相同的疏散距离。

.0.9管道、电气线路敷设在墙体内或穿过楼板、墙体时,应采取防火保护措施,与墙体、楼板之间的缝隙应采用防火封堵材料填塞密实。

住宅建筑内厨房的明火或高温部位及排油烟管道等,应采用防火隔热措施。

.0.9本条为强制性标准条文。木结构建筑,特别是轻型木结构体系的建筑,其墙体、楼板和木骨架组合墙体内的龙骨均为木材。在其中敷设或穿过电线、电缆时,因电气原因导致发热或火灾时不易被发现,存在较大安全隐患,因此规定相关电线、电缆均需釆取如穿金属导管保护。建筑内的明火部位或厨房内的灶台、热加工部位、烟道或排油烟管道等高温作业或温度较高的排气管道、易着火的油烟管道,均需避免与这些墙体直接接触,要在其周围采用导热性差的不燃材料隔热等防火保护或隔热措施,以降低其火灾危险性。

有关防火封堵要求,见本规范第6.3.4-6.3.5条的条文说明。

.0.0民用木结构建筑之间及其与其他民用建筑的防火间距不应小于表.0.0的规定。

民用木结构建筑与厂房(仓库)等建筑的防火间距、木结构厂房(仓库)之间及其与其他民用建筑的防火间距,应符合本规范第3、4章有关四级耐火等级建筑的规定。

表.0.0民用木结构建筑之间及其与其他民用建筑的防火间距(m)

建筑耐火等级或类别

―、二级

三级

木结构建筑

四级

木结构建筑

8

9

0

注:

两座木结构建筑之间或木结构建筑与其他民用建筑之间,外墙均无任何门、窗、洞口时,防火间距可为4m;外墙上的门、窗、洞口不正对且开口面积之和不大于外墙面积的0%时,防火间距可按本表的规定减少5%。

当相邻建筑外墙有一面为防火墙,或建筑物之间设置防火墙且墙体截断不燃性屋面或高出难燃性、可燃性屋面不低于0.5m时,防火间距不限。

.0.0本条为强制性标准条文。木结构建筑之间及木结构建筑与其它结构类型建筑的防火间距,是在分析了国内外相关建筑规范基础上,根据木结构和其他结构类型建筑的耐火性能确定的。

试验证明,发生火灾的建筑对相邻建筑的影响与该建筑物外墙的耐火极限和外墙上的窗或洞口的开口比例有直接关系。目前,木结构建筑的允许建造规模均较小。根据加拿大国家建筑研究院的相关试验结果,如果相邻两建筑的外墙均无洞口,并且外墙的耐火极限均不低于.00h时,防火间距减少至4m后仍能够在足够时间内有效阻止火灾的相互蔓延。考虑到有些建筑完全不开门、窗比较困难,比照本规范第5章的规定,当每一面外墙开孔不大于0%时,允许防火间距按照本条文中表.0.0的规定减少5%,但外墙的耐火极限不应低于.00h。

.0.木结构墙体、楼板及封闭吊顶或屋顶下的密闭空间内应采取防火分隔措施,且水平分隔长度或宽度均不应大于0m,建筑面积不应大于m,墙体的竖向分隔高度不应大于3m。

轻型木结构建筑的每层楼梯梁处应采取防火分隔措施。

.0.木结构建筑,特别是轻型木结构建筑中的框架构件和面板之间存在许多空腔。对墙体、楼板及封闭吊顶或屋顶下的密闭空间采取防火分隔措施,可阻止因构件内某处着火所产生的火焰、高温气体以及烟气在这些空腔内蔓延。根据加拿大《国家建筑规范》(00年版),常釆用厚度不小于38mm的实木锯材、厚度不小于mm的石膏板或厚度不小于0.38mm的钢挡板进行防火分隔。

在轻型木结构建筑中设置水平防火分隔,主要用于限制火焰和烟气在水平构件内蔓延。水平防火构造的设置,一般要根据空间的长度、宽度和面积来确定。常见的做法是,将这些空间按照每一空间的面积不大于m,长度或宽度不大于0m的要求划分为较小的防火分隔空间。当顶棚材料安装在龙骨上时,一般需在双向龙骨形成的空间内增加水平防火分隔构件。采用实木锯材或工字搁栅的楼板和屋顶盖,搁栅之间的支撑通常可用作水平防火分隔构件,但当空间的长度或宽度大于0m时,沿搁栅平行方向还需要增加防火分隔构件。墙体竖向的防火分隔,主要用于阻挡火焰和烟气通过构件上的开孔或墙体内的空腔在不同构件之间蔓延。多敎轻型木结构墙体的防火分隔,主要采用墙体的顶梁板和底梁板来实现。对于弧型角吊顶、下沉式吊顶和局部下沉式吊顶,在构件的竖向空腔与横向空腔的交汇处,需要釆取防火分隔构造措施。在其他大多数情况下,这种防火分隔可采用墙体的顶梁板、楼板中的端部桁架以及端部支撑来实现。水平密闭空腔与竖向密闭空腔的连接交汇处、轻型木结构建筑的梁与楼板交接的最后一级踏步处,一般也需要采取类似的防火分隔措施。

.0.木结构建筑组合建造时,应符合下列规定:

竖向组合建造时,木结构部分的层数不应超过3层并应设置在建筑的上部,木结构部分与其他结构部分宜釆用耐火极限不低于.00h的不燃性楼板分隔。

水平组合建造时,木结构部分与其他结构部分宜采用防火墙分隔;

当木结构部分与其他结构部分之间按本条第款的规定进行了防火分隔时,木结构部分和其他部分的防火设计,可分别执行本规范对木结构建筑和其他结构建筑的规定;其他情况,建筑的防火设计应执行本规范有关木结构建筑的规定;

3室内消防给水应根据建筑的总高度、体积或层数和用途按本规范第8章和国家现行有关标准的规定确定,室外消防给水应按本规范有关四级耐火等级建筑的规定确定。

.0.本条规定了木结构与钢结构、钢筋混凝土结构或砌体结构等其他结构类型组合建造时的防火设计要求。

对于竖向组合建造的形式,火灾通常都是从下往上蔓延,当建筑物下部着火时,火焰会蔓延到上层的木结构部分;佴有时火灾也能从上部蔓延到下部,放有必要在木结构与其他结构之间采取竖向防火分隔措施。本条规定要求:当下部建筑为钢筋混凝土结构或其他不燃性结构时,建筑的总楼层数可大于3层,但无论与哪种不燃性结构竖向组合建造,木结构部分的层数均不能多于3层。对于水平组合建造的形式,采用防火墙将木结构部分与其他结构部分分隔开,能更好地防止火势从建筑物的一侧蔓延至另一侧。如果未做分隔,就要将组合建筑整体按照木结构建筑的要求确定相关防火要求。

.0.3总建筑面积大于m的木结构公共建筑应设置火灾自动报警系统,木结构住宅建筑内应设置火灾探测与报謦装置。

.0.3木结构建筑内可燃材料较多,且空间一般较小,火灾发展相对较快。为能及早报警,通知人员尽早疏散和釆取灭火行动,特别是有人住宿的场所和用于婴幼儿或老年人活动的场所,要求设置火灾自动报警系统。木结构住宅建筑的火灾自动报警系统,一般采用家用火灾报警装置。

.0.4木结构建筑的其他防火设计应执行本规范有关四级耐火等级建筑的规定,防火构造要求除应符合本规范的规定外,尚应符合现行国家标准《木结构设计规范》GB5等标准的规定。

城市交通隧道国内外发生的隧道火灾均表明,隧道特殊的火灾环境对人员逃生和灭火救援是一个严重的挑战,而且火灾在短时间内就能对隧道设施造成很大的破坏。有限的逃生和救援条件,要求对隧道采取与地面建筑不同的防火措施。由于国家对地下铁道的防火设计要求已有标准,而管线隧道、电缆隧道的情况与城市交通隧道有一定差异,本章主要根据国内外隧道情况和相关标准,确定了城市交通隧道的通用防火技术要求。.一般规定

..城市交通隧道(以下简称隧道)的防火设计应综合考虑隧道内的交通组成、隧道的用途、自然条件、长度等因素。

..隧道的用途及交通组成、通风情况决定了隧道可燃物数量与种类、火灾的可能规模及其增长过程和火灾延续时间,影响隧道发生火灾时可能逃生的人员数量及其疏散设施的布置;隧道的环境条件和隧道长度等决定了消防救援和人员的逃生难易程度及隧道的防烟、排烟和通风方案;隧道的通风与排烟等因素又对隧道中的人员逃生和灭火救援影响很大。因此,隧道设计应综合考虑各种因素和条件后,合理确定防火要求。

..单孔和双孔隧道应按其封闭段长度和交通情况分为一、二、三、四类,并应符合表..的规定。

表..单孔和双孔隧道分类

用途

一类

二类

三类

四类

隧道封闭段长度L(m)

可通行危险化学品等机动车

L>

<L≤

L≤

仅限通行非危险化学品等机动车

L>

<L≤

<L≤

L≤

仅限人行或通行非机动车

L>

L≤

..交通隧道的火灾危险性主要在于:)现代隧道的长度日益增加,导致排烟和逃生、救援困难;)不仅车载量更大,而且需通行运输危险材料的车辆,有时受条件限制还需采用单孔双向行车道,导致火灾规模增大,对隧道结构的破坏作用大;3)车流量日益增长,导致发生火灾的可能性增加。本规范在进行隧道分类时,参考了日本《道路隧道紧急情况用设施设置基准及说明》和我国《公路隧道交通工程设计规范》等标准,并适当做了简化,考虑的主要因素为隧道长度和通行车辆类型。

..3隧道承重结构体的耐火极限应符合下列规定:

一、二类隧道和通行机动车的三类隧道,其承重结构体耐火极限的测定应符合本规范附录C的规定;对于一、二类隧道,火灾升温曲线应采用本规范附录C第C.0.条规定的RABT标准升温曲线,耐火极限分别不应低于.00h和.50h;对于通行机动车的三类隧道,火灾升温曲线应采用本规范附录C第C.0.条规定的HC标准升温曲线,耐火极限不应低于.00h;

其他类别隧道承重结构体耐火极限的测定应符合现行国家标准《建筑构件耐火试验方法第部分:通用要求》GB/T.的规定;对于三类隧道,耐火极限不应低于.00h;对于四类,耐火极限不限。

..3本务为强制性标准条文。隧道结构一旦受到破坏,特别是发生明塌时,其修复难度非常大,花费也大。同时,火灾条件下的隧道结构安全,是保证火灾时灭火救援和火灾后隧道尽快修复使用的重要条件。不同隧道可能的火灾规模与持续时间有所差异。目前,各国以建筑构件为对象的标准耐火试验,均以ISO的标准升温曲线(纤维质类)为基础,如BS第0部分、DIN40、AS和GB等。该标准升温曲线以常规工业与民用建筑物内的材料的燃烧特性为基础,模拟了地面开放空间火灾的发展状况,但这一模型不适用于石油化工工程中的有些火灾,也不适用于常见的隧道火灾。

隧道火灾是以碳氢火灾为主的混合火灾。碳氢(HC)标准升温曲线的特点是所模拟的火灾在发展初期带有爆燃-热冲击现象,温度在最初5min之内可达到℃左右,0min后稳定在℃左右。这种升温曲线模拟了火灾在特定环境或高潜热值燃料燃烧的发展过程,在国际石化工业领域和隧道工程防火中得到了普遍应用。过去,国内外开展了大量研究来确定可能发生在隧道以及其它地下建筑中的火灾类型,特别是年前后欧洲开展的Eureka研究计划。根据这些研究的成果,发展了一系列不同火灾类型的升温曲线。其中,法国提出了改进的碳氢标准升温曲线、德国提出了RABT曲线、荷兰交通部与TNO实验室提出了RWS标准升温曲线,我国则以碳氢升温曲线为主。在RABT曲线中,温度在5min之内就能快速升高到00℃,在00℃处持续90min,随后的30min内温度快速下降。这种升温曲线能比较真实地模拟隧道内大型车辆火灾的发展过程:在相对封闭的隧道空间内因热量难以扩散而导致火灾初期升温快、有较强的热冲击,随后由于缺氧状态和灭火作用而快速降温。火灾在最大热释放功率条件的持续时间受众多因素的影响。

此外,试验研究表明,混凝土结构受热后会由于内部产生高压水蒸气而导致表层受压,使混凝土发生爆裂。结构荷载压力和混凝土含水率越高,发生爆裂的可能性也越大。当混凝土的质量含水率大于3%时,受高温作用后肯定会发生爆裂现象。当充分干燥的混凝土长时间暴露在高温下时,混凝土内各种材料的结合水将会蒸发,从而使混凝土失去结合力而发生爆裂,最终会一层一层地穿透整个隧道的混凝土拱顶结构。这种爆裂破坏会影响人员逃生,使增强钢筋暴露于高温中失去强度而致结构破坏,甚至导致结构垮塌。对于水底隧道,这种结构性破坏很难进行修复。因此,本条对内衬的耐火也做了相应规定。

为满足隧道防火设计需要,在本规范附录C中增加了有关隧道结构耐火试验方法的有关要求。..4本条为强制性标准条文。服务于隧道的重要设备用房,主要包括隧道的通风与排烟机房、变电站、消防设备房。其他地面附属用房,主要包括收费站、道口检查亭、管理用房等。隧道内及地面保障隧道日常运行的各类设备用房、管理用房等基础设施以及消防救援专用口、临时避难间,在火灾情况下担负着灭火救援的重要作用,需确保这些用房的防火安全。

..4隧道内的地下设备用房、风井和消防救援出入口的耐火等级应为一级,地面的重要设备用房、运营管理中心及其他地面附属用房的耐火等级不应低于二级。

..5除嵌缝材料外,隧道的内部装修应采用不燃材料。

..5隧道内发生火灾时的烟气控制和减小火灾烟气对人的毒性作用也是隧道防火面临的主要问题,要严格控制装修材料的燃烧性能及其发烟量,特别是可能产生大量毒性气体的材料。

..6通行机动车的双孔隧道,其车行横通道或车行疏散通道的设置应符合下列规定:

水底隧道宜设置车行横通道或车行疏散通道。车行横通道的间隔和隧道通向车行疏散通道入口的间隔宜为m-m;

非水底隊道应设置车行横通道或车行疏散通道。车行横通道的间隔和隧道通向车行疏散通道入口的间隔不宜大于m;

3车行横通道应沿垂直隧道长度方向布置,并应通向相邻隧道;车行疏散通道应沿隧道长度方向布置在双孔中间,并应直通隧道外;

4车行横通道和车行疏散通道的净宽度不应小于4.0m,净高度不应小于4.5m;

5隧道与车行横通道或车行疏散通道的连通处,应采取防火分隔措施。

..6本条主要规定了不同隧道车行横通道或车行疏散通道的设置要求。

当隧道发生火灾时,下风向的车辆可继续向前方出口行驶,上风向的车辆则需要利用隧道辅助设施进行疏散。一般,隧道内的车辆疏散可采用两种方式,一是在双孔隧道之间设置车行横通道,另一种是在双孔中间设置专用车行疏散通道。相比较,前者工程量小、造价较低,在工程中得到普遍应用;后者可靠性更好、安全性高,但因造价高,在工程中应用不多。双孔隧道之间的车行横通道、专用车行疏散通道不仅可用于隧道内车辆疏散,还可用于巡查、维修、救援及车辆转换行驶方向。

车行横通道间隔及隧道通向车行疏散通道的入口间隔,在本次修订时进行了适当调整,水底隧道由原规定的m-m调整为m-m,非水底隧道由原规定的00m-m调整为不宜大于m。主要考虑到两方面因素:一方面,受地质条件多样性的影响,城市隧道的施工方法较多,穿越江、河、湖泊等水底隧道常采用盾构法、沉管法施工,在隧道两管间设置车行横通道的工程风险非常大,可实施性不强;另一方面,城市隧道灭火救援晌应快、隧道内消防设施齐全,而且越来越多的城市隧道设计有多处进、出口匝道,事故时,车辆可利用匝道进行疏散。

此外,本条规定还参考了国内、外相关规范,如国家行业标准《公路隧道设计规范》JTGD70-和《欧洲道路隧道安全》等标准或技术文件。《公路隧道设计规范》规定,山岭公路隧道的车行横通道间隔:车行横通道的设置间距可取m,并不得大于m:长m-m的隧道宜设置处,中、短隧道可不设;《欧洲道路隧道安全》规定,双管隧道之间车行横通道的间距为m;奥地利RVS9.8/9.8规定,车行横向连接通道的间距为m。综上所述,本次修订适当加大了车行横通道的间隔。《公路隧道设计规班》JTGD70-对山岭公路隧道车行横通道的断面建筑限界规定,如图3所示。城市交通隧道对通行车辆种类有严格的规定,如有些隧道只允许通行小型机动车、有些隧道禁止通行货车、有些是客货混用隧道。横通道的断面建筑限界应与隧道通行车辆种类相适应,仅通行小型机动车或禁止通行大型货车的隧道横通道的断面建筑限界可适当降低。

图3车行横通道的断面建筑限界(单位cm)

3隧道与车行横通道或车行疏散通道的连通处釆取防火分隔措施,是为防止火灾向相邻隧道或车行疏散通道蔓延。防火分隔措施可采用耐火极限与相应结构耐火极限一致的防火门,防火门还要具有良好的密闭防烟性能。

..7双孔隧道应设置人行横通道或人行疏散通道,并应符合下列规定:

人行横通道的间隔和隧道通向人行疏散通道入口的间隔,宜为50m-m;

人行疏散横通道应沿垂直双孔隧道长度方向布置,并应通向相邻隧道。人行疏散通道应沿隧道长度方向布置在双孔中间,并应直通隧道外;

3人行横通道可利用车行横通道;

4人行横通道或人行疏散通道的净宽度不应小于.m,净高度不应小于.m;

5隧道与人行横通道或人行疏散通道的连通处,应釆取防火分隔措施,门应采用乙级防火门。

..7本条规定了双孔隧道设置人行横通道或人行疏散通道的要求。

在隧道设计中,可以釆用多种逃生避难形式,如横通道、地下管廊、疏散专用道等。釆用人行横通道和人行疏散通道进行疏散与逃生,是目前隧道中应用较为普遍的形式。人行横通道是垂直于两孔隧道长度方向设置、连接相邻两孔隧道的通道,当两孔隧道中某一条隧道发生火灾时,该隧道内的人员可以通过人行横通道疏散至相邻隧道。人行疏散通道是设在两孔隧道中间或隧道路面下方、直通隧道外的通道,当隧道发生火灾时,隧道内的人员进入该通道进行逃生。人行横通道与人行疏散通道相比,造价相对较低,且可以利用隧道内车行横通道。设置人行横通道和人行疏散通道时,需符合以下原则:

人行横道道的间隔和隧道通向人行疏散通道的入口间隔,要能有效保证隧道内的人员在较短时间内进入人行横通道或人行疏散通道。根据荷兰及欧洲的一系列模拟实验,50m为隧道内的人员在初期火灾烟雾浓度未造成更大影响情况下的最大逃生距离。《公路隧道设计规范》JTQD70-规定了山岭公路隧道的人行横通道间隔:人行横通道的设置间距可取50m,并不大于m.美国消防协会《公路隧道、桥梁及其他限行公路标准》NFPA50(0年版}规定隧道应有应急出口,且间距不应大手m;当隧道被耐火极限为.00h以上的结构分隔,或隧道为双孔时,两孔间的横通道可以替代应急出口,且间距不应大于00m。其他一些国家对人行横通道的规定如表。人行横通道或人行疏散通道的尺寸要能保证人员的应急通行。

本次修订对人行横通道的净尺寸进行了适当调整,由原来的净宽度不应小于.0m、净高度不应小于.tn分别调整为净宽度不应小子.m、净高度不应小于.lm。原规定主要参照《公路隧道设计规范》JTGD70-对山岭公路人行隧道横通道的断面建筑限界规定。城市隧道由于地质条件的复杂性和施工方法的多样性,相当多的城市隧道采用盾构法施工,设置宽度不小于.0m的人行横通道难度很大、工程风险高。本次修订的人行横通道宽度,参考了美国消防协会《公路隧道、桥梁及其他限行公路标准》NFPA50(0年版〉的相关规定(人行横通道的净宽不小于l.m),同时,结合我国人体特征,考虑了满足股人流通行及消防员带装备通行的需求。

另外,人行横通道的宽度加大后也不利于对疏散通道实施正压送风。综合以上因素,本次修订时适当调整了人行横通道的尺寸,使之既满足人员疏散和消防员通行的要求,又能降低施工风险。3隧道与人行横通道或人行疏散通道的连通处所进行的防火分隔,应能防止火灾和烟气影响人员安全疏散。目前较为普遍的做法是,在隧道与人行横通道或人行疏散通道的连通处设置防火门。美国消防协会《公路隧道、桥梁及其他限行公路标准》NFPA50(0年版〉规定,人行横通道与隧道连通处门的耐火极限应达到.5h。

..8单孔隧道宜设置直通室外的人员疏散门或独立避难所等避难设施。

..8避难设施不仅可为逃生人员提供保护,还可用作消防员暂时躲避烟雾和热气的场所。在中、长隧道设计中,设置人员的安全避难场所是一项重要内容。避难场所的设置要充分考虑通道的设置、隔间及空间的分配以及相应的辅助设施的要求。对于较长的单孔隧道和水底隧道,采用人行疏散通道或人行横通道存在一定难度时,可以考虑其它形式的人员疏散或避难,如设置直通室外的疏散出口、独立的避难场所、路面下的专用疏散通道等。

..9隧道内的变电站、管廊、专用疏散通道、通风机房及其他辅助用房等,应采取耐火极限不低于.00h的防火隔墙和乙级防火门等分隔措施与车行隧道分隔。

..9隧道内的变电站、管廊、专用疏散通道、通风机房等是保障隧道日常运行和应急救援的重要设施,有的本身还具有一定的火灾危险性。因此,在设计中要采取一定的防火分隔措施与车行隧道分隔。其分隔要求可参照本规范第6章有关建筑物内重要房间的分隔要求确定。

..0隧道内地下设备用房的每个防火分区的最大允许建筑面积不应大于m,每个防火分区的安全出口数量不应少于个,与车道或其它防火分区相通的出口可作为第二安全出口,但必须至少设置个直通室外的安全出口;建筑面积不大于m且无人值守的设备用房可设置个直通室外的安全出口。

..0本条规定了地下设备用房的防火分区划分和安全出口设置要求。考虑到隧道的一些专用设备,如风机房、风道等占地面积较大、安全出口难以开设,且机房无人值守,只有少数人员巡检的实际情况,规定了单个防火分区的最大允许建筑面积不大于m,以尽量减少直通地面安全出口的设置。

.消防给水和灭火设施

..在进行城市交通的规划和设计时,应同时设计消防给水系统。四类隧道和行人或通行非机动车辆的三类隧道,可不设置消防给水系统。

..消防给水系统的设置应符合下列规定:

消防水源和供水管网应符合国家现行有关标准的规定;

消防用水量应按隧道的火灾延续时间和隧道全线同一时间发生一次火灾计算确定。一、二类隧道的火灾延续时间不应小于3.0h;三类隧道,不应小于.0h;

3隧道内的消防用水量应按需要同时开启所有灭火设施的用水量之和计算;

4隧道内宜设置独立的消防给水系统。严寒和寒冷地区的消防给水管道及室外消火栓应釆取防冻措施;当釆用干式给水系统时,应在管网的最高部位设置自动排气阀,管道的充水时间不宜大于90s;

5隧道内的消火栓用水量不应小于0L/s,隧道外的消火栓用水量不应小于30L/s。对于长度小于m的三类隧道,隧道内、外的消火栓用水量可分别为0L/s和0L/s。

6管道内的消防供水压力应保证用水量达到最大时,最不利点处的水枪充实水柱不小于0.0m。消火栓栓口处的出水压力大于0.5MPa时,应设置减压设施;

7在隧道出入口处应设置消防水泵接合器和室外消火栓;

8隧道内消火栓的间距不应大于50m,消火栓的栓口距地面高度宜为.m;

9设置消防水泵供水设施的隧道,应在消火栓箱内设置消防水泵启动按钮;

0应在隧道单侧设置室内消火栓箱,消火栓箱内应配置支喷嘴口径9mm的水枪、盘长5m、直径65mm的水带,并宜配置消防软管卷盘。

..-..条文参照本规范第8章及国内外相关标准的要求,规定了隧道的消防给水及其管道、设备等的一般设计要求。四类隧道和通行人员或非机动车辆的三类隧道,通常隧道长度较短或火灾危险性较小,可以利用城市公共消防系统或者灭火器进行灭火、控火,而不需单独设置消防给水系统。

隧道的火灾延续时间,与隧道内的通风情况和实际的交通状况关系密切,有时往往延续较长时间。本条尽管规定了一个基本的火灾延续时间,但有条件的,还是要根据隧道通行车辆及其长度,特别是一类隧道,尽量采用更长的设计火灾延续时间,以保证有较充分的灭火用水储备量。在洞口附近设置的水泵接合器,对于城市隧道的灭火救援而言,十分重要。水泵接合器的设置位置,既要便于消防车向隧道内的管网供水,还要不影响附近的其他救援行动。

..3隧道内应设置排水设施。排水设施应考虑排除渗水、雨水、隧道清洗等水量和灭火时的消防用水量,并应釆取防止事故时可燃液体或有害液体沿隧填漫流的措施。

..3本条规定的隧道排水,其目的于排除灭火过程中产生的大量积水,避免隧道内因积聚雨水、渗水、灭火产生的废水而导致可燃液体流散,增加疏散与救援的困难,防止运输可燃液体或有害液体车辆逸漏但未燃烧的液体,因缺乏有组织的排水措施而漫流进入其它设备沟、疏散通道、重要设备房等区域内而引发火灾事故。

..4隧道内应设置ABC类灭火器,并应符合下列规定:

通行机动车的一、二类隧道和通行机动车并设置3条及以上车道的的三类隧道,在隧道两侧均应设置灭火器;每个设置点不应少于4具;

其他隧道,可在隧道一侧设置灭火器;每个设置点不应少于具;

3灭火器设置点的间距不应大于00m。

..4引发隧道内火灾的主要部位有:行驶车辆的油箱、驾驶室、行李或货物和客车的旅客座位等,火灾类型一释为A、B类混合,部分火灾可能因隧道内的电器设备、配电线路引起。因此,在隧道内要合理配置能扑灭ABC类的灭火器。

本条有关数值的确定,参考了国家标准《建筑灭火器配置设计规范》GB-、美国消防协会、日本建设省的有关标准和国外有关隧道的研究报告。对于交通量大或者车道较多的隧道,为保证人身安全和快速处置初起火,有必要在隧道两侧设置灭火器。四类隧道一般为火灾危险性较小或长度较短的隧道,即使发生火灾,人员疏散和扑救均较容易。因此,消防设施的设置以配备适用的灭火器为主。.3通风和排烟系统

根据对隧道的火灾事故分析,由一氧化碳导致的人员死亡和因直接烧伤、爆炸及其它有毒气体引起的人员死亡约各占一半。通常,采用通风、防排烟措施控制烟气产物及烟气运动可以改善火灾环境,并降低火场温度以及热烟气和热分解产物的浓度,改善视线。但是,机械通风会通过不同途径对不同类型和规模的火灾产生影响,在某些情况下反而会加剧火势发展和蔓延。实验表明:在低速通风时,对小轿车的火灾影响不大;可以降低小型油池(约l0m)火的热释放速率,但会加强通风控制的大型油池(约00m)火的热释放速率;在纵向机械通风条件下,载重货车火的热释放速率可以迗到自然通风条件下時数倍。因此,隧道内的通风排烟系统设计,要针对不同隧道环境确定合适的通风排烟方式和排烟量。

.3.通行机动车的一、二、三类隧道应设置排烟设施。

.3.本条为强制性标准条文。隧道的空间特性,导致其一旦发生火灾,热烟排除非常困难,往往会因高温而使结构发生破坏,烟气积聚而导致灭火、疏散困难且火灾延续时间很长。因此,隧道内发生火灾时的排烟是隧道防火设计的十分重要的内容。本条规定了需设置排烟设施的隧道,四类隧道因长度较短、发生火灾的概率较低或火灾危险性较小,可不设置排烟设施。

.3.隧道内机械排烟系统的设置应符合下列规定:

长度大于m的隧道,宜采用纵向分段排烟方式或重点排烟方式;

长度不大于m的单洞单向交通隧道,宜采用纵向排烟方式;

3单洞双向交通隧道,宜采用重点排烟方式。

.3.3机械排烟系统与隧道的通风系统宜分开设置。合用时,合用的通风系统应具备在火灾时快速转换的功能,并应符合机械排烟系统的要求。

.3.4隧道内设置的机械排烟系统应符合下列规定:

采用全横向和半横向通风方式时,可通过排风管道排烟;

采用纵向排烟方式时,应能迅速组织气流、有效排烟,其排烟风速应根据隧道内的最不利火灾规模确定,且纵向气流的速度不应小于m/s,并应大于临界风速;

3排烟风机和烟气流经的风阀、消声器、软接等辅助设备,应能承受设计的隧道火灾烟气排放温度,并应能在50℃下连续正常运行不小于.0h。排烟管道的耐火极限不应低于.00h。

.3.-.3.4隧道排烟方式分为自然排烟和机械排烟。自然排烟,是利用短隧道的洞口或在隧道沿途顶部开设的通风口(例如隧道敷设在路中绿化带下的情形)以及烟气自身浮力进行排烟的方式。釆用自然排烟时,应注意错位布置上、下行隧道开设的自然排烟口或上、下行隧道的洞口,防止非着火隧道汽车行驶形成的活塞风将邻近隧道排出的烟气“倒吸”入非着火隧道,造成烟气蔓延。

隧道的机械排烟模式分为纵向排烟和横向排烟方式以及由这两种基本排烟模式派生的各种组合排烟模式。排烟模式应根据隧道种类、疏散方式,并结合隧道正常工况的通风方式确定,并将烟气控制在较小范围之内,以保证乘客疏散路径上满足逃生环境要求,同时为灭火救援创造条件。

火灾时,迫使隧道内的烟气沿隧道纵向流动的排烟形式为纵向排烟模式,是适用干单向交通隧道的一种最常用烟气控制方式。该模式可通过悬挂在隧道内的射流风机或其他射流装置、风井送排风设施等及其组合方式实现。纵向通风排烟时,气流方向与车行方向一致,以火源点为界,火源点下游为烟气区、上游为非烟气区,司乘人员往气流上游方向疏散。由于高温烟气沿坡度向上扩散速度很快,当在坡道上发生火灾,并采用纵向排烟控制烟流,排烟气流逆坡向时,必须使纵向气流的流速高于临界风逮。试验证明,纵向排烟控制烟气的效果较好。PARC(国际道路协会)相关报告以及美国纪念隧道试验(年-年)均表明,对于火灾功率低于00MW的火灾、隧道坡度不高于4%时,3m/s的气流速度可以控制烟气回流。

近年来,大于3km的长大城市隧道越来越多,若整个隧道长度不进行分段通风,会造成火灾及烟气在隧道中的影响范围非常大,不利于消防救援以及灾后的修复。因此,本规范规定大于3km的长大隧道宜采用纵向分段排烟或重点排烟方式,以控制烟气的影响范围。纵向排烟方式不适用于双向交通的隧道,因在此情况下釆用纵向排烟方式会使火源一侧、不能驶离隧道的车辆处于烟气中。

3重点排烟是横向排烟方式的一种特殊情况,即在隧道纵向设置专用排烟风道,并设置一定数量的排烟口,火灾时只开启火源附近或火源所在设计排烟区的排烟口,直接从火源附近将烟气快速有效地排出行车道空间,并从两端洞口自然补风,隧道内可形成一定的纵向风速。该排烟方式适用于双向交通隧道或经常发生交通阻塞的隧道。

隧道试验表明,全横向或半横向排烟系统对发生火灾的位置比较敏感,控烟能力不很理想。因此,对于双向通行的隧道,尽量采用重点排烟方式。重点排烟的排烟量应根据火灾规模、隧道空间形状等确定,排烟量不应小于火灾的产烟量,隧道中重点排烟的排烟量目前还没有公认的数值,表3是国际道路协会(PIARC)推荐的烟雾体积流量。

表3国际道路协会推荐的烟雾体积流量

等同燃烧汽油盘面积(m)

火灾规模(MW)

烟雾体积流量(m3/s)

小客车

5

0

公交/火车

8

0

60

油罐车

30-00

00

00-00

4流经风机的烟气温度与隧道的火灾规模和风机距火源点的距离有关,火源小、距离远,隧道结构的冷却作用大,烟气温度也相应较低。通常位于排风道末端的排烟风机,排出的气体为位于火源附近的高温烟气与周围冷空气的混合气体,该气体的温度在沿隧道和土建风道流动过程中得到了进一步冷却。澳大利亚某隧道、美国纪念隧道以及我国在上海进行的隧道试验均表明:尽管火源距排烟风机较近,由于隧道的冷却作用,在排烟风机位置的烟气温度仍然低于50℃。因此,规定排烟风机要能耐受50℃的高温基本可以满足隧道排烟的要求。当设计火灾规模很大、风机离火源点很近时,排烟风机的耐高温设计要求可根据工程实际情况确定。本条的相关温度规定值为最低要求。5排烟设备的有效工作时间,是保证隧道内人员逃生和灭火救援环境的基本时间。人员撤离时间与隧道内的实际人数、逃生路径及环境有关。目前,已经有多种计算机模拟软件可以对建筑物中的人员疏散时间进行预测,设备的耐高温时间可在此基础上确定。本规范规定的排烟风机的耐高温时间还参考了欧洲有关隧道的设计要求和试验研究成果。6本条中有关避难场所内有关防烟的要求,参照了建筑内防烟楼梯间和避难走道的有关规定。

.3.5隧道的避难设施内应设置独立的机械加压送风系统,其送风的余压值应为30Pa-50Pa。

.3.6隧道内用于火灾排烟的射流风机,应至少备用一组。

.3.6隧道内用于通风和排烟的射流风机是悬挂于隧道车行道的上部,火灾时可能直接暴露于高温下,但隧道内的排烟风机设置是要根据其有效作用范围来确定,风机间有一定的间隔。采用射流风机进行排烟的隧道,设计需考虑到正好在火源附近的射流风机由于温度过高而导致失效的情况,保证有一定的冗余配置。

.4火灾自动报警系统

.4.隧道入口外00m-50m处,应设置隧道内发生火灾时能提示车辆禁入隧道的警报信号装置。

.4.隧道内发生火灾时,隧道外行驶的车辆往往还正按正常速度驶入隧道,对隧道内的情况多处于不知情的状态,故规定本条要求,以警示并阻止后续车辆进入隧道。

.4.一、二类隧道应设置火灾自动报警系统,通行机动车的三类隧道宜设置火灾自动报警系统。火灾自动报警系统的设置应符合下列规定:

应设置火灾自动探测装置;

隧道出入口和隧道内每隔00m-50m处,应设置报警电话和报警按钮;

3应设置火灾应急广播或应每隔00m-50m处设置发光警报装置。

.4.为早期发现、及早通知隧道内的人员与车辆进行疏散和避让,向相关管理人员报警以采取救援行动,尽可能在初期将火扑灭,要求在隧道内设置合适的火灾报警系统。火灾报警装置的设置需根据隧道类别分别考虑,并至少要具备手动或自动报警功能。对于长大隧道,应设置火灾自动报警系统,并要求具备报警联络电话、声光显示报警功能。由于隧道内的环境差异较大,较工业与民用建筑物内的条件恶劣,如风速大、空气污染程度高等,因此火灾探测与报警装置的选择要充分考虑这些不利因素。

.4.3隧道用电缆通道和主要设备用房内应设置火灾自动报警系统。

.4.3隧道内的主要设备用房和电缆通道,因平时无人值守,着火后人员很难及时发现,因此也需设置必要的探测与报警系统,并使其火警信号能传送到监控室。

.4.4对于可能产生屏蔽的隧道,应设置无线通信等保证灭火时通信联络畅通的设施。

.4.4隧道内一般均具有一定的电磁屏蔽效应,可能导致通信中断或无法进行无线联络。为保障灭火救援的通信联络畅通,在可能出现屏蔽的隧道内需采取措施使无线通信讯号,特别是要保证城市公安消防机构的无线通信网络信号能进入隧道。

.4.5封闭段长度超过m的隧道宜设置消防控制室,消防控制室的建筑防火要求应符合本规范第8..7条和第8..8条的规定。

隧道内火灾自动报警系统的设计应符合现行国家标准《火灾自动报警系统设计规范》GB的规定。

.4.5为保证能及时处理火警,要求长大隧道均应设置消防控制室。消防控制室的设置可以与其他监控室合用,其他要求应符合本规范第8章及现行国家标准《火灾自动报警系统设计规范》GB有关消防控制室的要求。隧道内的火灾自动报警系统及其控制设备组成、功能、设备布置以及火灾探测器、应急广播、消防专用电话等的设计要求,均需符合现行国家标准《火灾自动报警系统设计规范》GB的规定。

.5供电及其他

.5.―、二类隧道的消防用电应按一级负荷要求供电;三类隧道的消防用电应按二级负荷要求供电。

.5.本条为强制性标准条文。消防用电的可靠性是保证建筑硝防设施可靠运行的基本保证。本条根据不同隧道火灾的扑救难度和发生火灾后可能的危害与损失、消防设施的用电情况,确定了隧道中消防用电的供电负荷要求。

.5.隧道的消防电源及其供电、配电线路等的其他要求应符合本规范第0.节的规定

.5.3隧道两侧、人行横通道和人行疏散通道上应设置疏散照明和疏散指示标志,其设置高度不宜大于.5m。

一、二类隧道内疏散照明和疏散指示标志的连续供电时间不应小于.5h;其他隧道,不应小于.0h。其他要求可按本规范第0章的规定确定。

.5.-.5.3隧道火灾的延续时间一般较长,火场环境条件恶劣、温度高,对消防用电设备、电源、供电、配电及其配电线路等的设计,要求较一般工业与民用建筑高。本条所规定的消防应急照明的延续供电时间,较一般工业与民用建筑的要求长,设计要采取有效的防火保护措施,确保消防配电线路不受高温作用而中断供电。一、二类隧道和三类隧道内消防应急照明灯具和疏散指示标志的连续供电时间,由原来的3.0h和.5h分别调整为.5h和.0h。这主要基于两方面的原因:一方面,根据隧道建设和运营经验,火灾时隧道内司乘人员的疏散时间多为5min-60min,如应急照明灯具和疏散指示标志的时间过长,会造成UPS电源设备数量庞大、维护成本高;另一方面,欧洲一些国家对隧道防火的研究时间长,经验丰富,这些国家一些隧道规范和地铁隧道技术文件对应急照明时间的相关要求多数在l.0h之内。因此,本次修订缩短了隧道内消防应急照明灯具和疏散指示标志的连续供电时间。

.5.4隧道内严禁设置可燃气体管道;电缆线槽应与其他管道分开敷设。当设置0kV及以上的高压电缆时,应采用耐火极限不低于.00h的防火分隔体与其他区域分隔。

.5.4本条为强制性标准条文。本条规定目的在于控制隧道内的灾害源,降低火灾危险,防止隧道着火时因高压线路、燃气管线等加剧火势的发展而影响安全疏散与抢险救援等行动。考虑到城市空间资源紧张,少数情况下不可避免存在高压电缆敷设需搭载隧道穿越江、河、湖泊等的情况,要求采取一定防火措施后允许借道敷设,以保障输电线路和隧道的安全。

.5.5隧道内设置的各类消防设施均应采取与隧道内环境条件相适应的保护措施,并应设置明显的发光指示标志。

.5.5隧道内的环境较恶劣,风速高、空气污染程度高,隧道内所设置的相关捕防设施要能耐受隧道内的恶劣环境影响,防止发生霉变、腐蚀、短路、变质等情况,确保设施有效。此外,也要在消防设施上或旁边设置可发光的标志,便于人员在火灾条件下快速识别和寻找。

附录A建筑高度和建筑层数的计算方法

A.0.建筑高度的计算应符合下列规定:;

建筑屋面为坡屋面时,建筑高度应为建筑室外设计地面至其檐口与屋脊的平均高度;建筑屋面为平屋面(包括有女儿墙的平屋面)时,建筑高度应为建筑室外设计地面至其屋面面层的高度;3同一座建筑有多种形式的屋面时,建筑高度应按上述方法分别计算后,取其中最大值;4对于台阶式地坪,当位于不同高程地坪上的同一建筑之间有防火墙分隔,各自有符合规范规定的安全出口,且可沿建筑的两个长边设置贯通式或尽头式消防车道时,可分别计算各自的建筑高度。否则,应按其中建筑高度最大者确定该建筑的建筑高度;5局部突出屋顶的瞭望塔、冷却塔、水箱间、微波天线间或设施、电梯机房、排风和排烟机房以及楼梯出口小间等辅助用房占屋面面积不大于/4者,可不计入建筑高度;6对于住宅建筑,设置在底部且室内高度不大于.m的自行车库、储藏室、敞开空间,室内外高差或建筑的地下或半地下室的顶板面高出室外设计地面的高度不大于.5m的部分,可不计入建筑高度。

A.0.建筑层数应按建筑的自然层数计算,下列空间可不计入建筑层数:

室内顶板面高出室外设计地面的高度不大于.5m的地下或半地下室;设置在建筑底部且室内高度不大于.m的自行车库、储藏室、敞开空间;3建筑屋顶上突出的局部设备用房、出屋面的楼梯间等。附录B防火间距的计算方法

B.0.建筑物之间的防火间距应按相邻建筑外墙的最近水平距离计算,当外墙有凸出的可燃或难燃构件时,应从其凸出部分外缘算起。

建筑物与储罐、堆场的防火间距,应为建筑外墙至储罐外壁或堆场中相邻堆垛外缘的最近水平距离。

B.0.储罐之间的防火间距应为相邻两储罐外壁的最近水平距离。

储罐与堆场的防火间距应为储罐外壁至堆场中相邻堆垛外缘的最近水平距离。

B.0.3堆场之间的防火间距应为两堆场中相邻堆垛外缘的最近水平距离。

B.0.4变压器之间的防火间距应为相邻变压器外壁的蕞近水平距离。

变压器与建筑物、储罐或堆场的防火间距,应为变压器外壁至建筑外墙、储罐外壁或相邻堆垛外缘的最近水平距离。

B.0.5建筑物、储罐或堆场与道路、铁路的防火间距,应为建筑外墙、储罐外壁或相邻堆垛外缘距道路最近一侧路边或铁路中心线的最小水平距离。

附录C隧道内承重结构体的耐火极限试验升温曲线和相应的判定标准

C.0.RABT和HC标准升温曲线应符合现行国家标准《建筑构件耐火试验可供选择和附加的试验程序》GB/T的规定。

C.0.耐火极限判定标准

当采用HC标准升温曲线测试时,耐火极限的判定标准为:受火后,当距离混凝土底表面5mm处钢筋的温度超过50℃,或者混凝土表面的温度超过℃时,则判定为迖到耐火极限。当采用RABT标准升温曲线测试时,耐火极限的判定标准为:受火后,当距离混凝土底表面5mm处钢筋的温度超过℃,或者混凝土表面的温度超过℃时,则判定为达到耐火极限。预览时标签不可点


转载请注明:http://www.megaella.net/elwh/658974.html

  • 上一篇文章:
  • 下一篇文章: 没有了